May 10, 2024
Extending the spectrum of fully integrated photonics to submicrometre wavelengths – Nature

Extending the spectrum of fully integrated photonics to submicrometre wavelengths – Nature

  • Jones, R. et al. Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers. IEEE Nanotechnol. Mag. 13, 17–26 (2019).

    Article 

    Google Scholar
     

  • Doerr, C., Chen, L., Chen, L. & Ton, D. Linear 2D beam steering with a large focusing grating via focal point movement and wavelength. IEEE Photon. Technol. Lett. 33, 935–938 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wang, J. et al. Silicon-based integrated label-free optofluidic biosensors: latest advances and roadmap. Adv. Mater. Technol. 5, 1901138 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Heck, M. J. R., Bauters, J. F., Davenport, M. L., Spencer, D. T. & Bowers, J. E. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photon. Rev. 8, 667–686 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Margalit, N. et al. Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett. 118, 220501 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature 556, 349–354 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fathololoumi, S. et al. 1.6 Tbps silicon photonics integrated circuit and 800 Gbps photonic engine for switch co-packaging demonstration. J. Lightwave Technol. 39, 1155–1161 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Merz, J. L., Yuan, Y. R. & Vawter, G. A. Photonics for integrated circuits and communications. Opt. Eng. 24, 214–219 (1985).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Komljenovic, T. et al. Photonic integrated circuits using heterogeneous integration on silicon. Proc. IEEE 106, 2246–2257 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Q., Xing, Z. & Huang, D. Implementation of pruned backpropagation neural network based on photonic integrated circuits. Photonics 8, 363 (2021).

    Article 

    Google Scholar
     

  • Poulton, C. V. et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett. 42, 4091–4094 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Mehta, K. K. et al. Integrated optical multi-ion quantum logic. Nature 586, 533–537 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature 586, 538–542 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hummon, M. T. et al. Photonic chip for laser stabilization to an atomic vapor with 10−11 instability. Optica 5, 443–449 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Masood, T. & Egger, J. Augmented reality: focusing on photonics in industry 4.0. IEEE J. Sel. Top. Quantum Electron. 27, 1–11 (2021).

    Article 

    Google Scholar
     

  • Zinoviev, K. E., González-Guerrero, A. B., Domínguez, C. & Lechuga, L. M. Integrated bimodal waveguide interferometric biosensor for label-free analysis. J. Lightwave Technol. 29, 1926–1930 (2011).

    ADS 
    Article 

    Google Scholar
     

  • Orieux, A. & Diamanti, E. Recent advances on integrated quantum communications. J. Opt. 18, 083002 (2016).

    ADS 
    Article 

    Google Scholar
     

  • Blumenthal, D. J. Photonic integration for UV to IR applications. APL Photon. 5, 020903 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Krückel, C. J., Fülöp, A., Ye, Z., Andrekson, P. A. & Torres-Company, V. Optical bandgap engineering in nonlinear silicon nitride waveguides. Opt. Express 25, 15370–15380 (2017).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Puckett, M. W. et al. 422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nat. Commun. 12, 934 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li, B. et al. Reaching fiber-laser coherence in integrated photonics. Opt. Lett. 46, 5201–5204 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Morin, T. J. et al. CMOS-foundry-based blue and violet photonics. Optica 8, 755–756 (2021).

    ADS 
    Article 

    Google Scholar
     

  • Xiang, C. et al. Narrow-linewidth III-V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica 7, 20–21 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Op de Beeck, C. et al. Heterogeneous III–V on silicon nitride amplifiers and lasers via microtransfer printing. Optica 7, 386–393 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Fang, A. W. et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 14, 9203–9210 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Park, H., Zhang, C., Tran, M. A. & Komljenovic, T. Heterogeneous silicon nitride photonics. Optica 7, 336–337 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 346–353 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Tran, M. A., Huang, D. & Bowers, J. E. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III–V heterogeneous integration. APL Photon. 4, 111101 (2019).

    ADS 
    Article 

    Google Scholar
     

  • Wieman, C. E. & Hollberg, L. Using diode lasers for atomic physics. Rev. Sci. Instrum. 62, 1–20 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Arnold, A. S., Wilson, J. S. & Boshier, M. G. A simple extended-cavity diode laser. Rev. Sci. Instrum. 69, 1236–1239 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Liu, K. & Littman, M. G. Novel geometry for single-mode scanning of tunable lasers. Opt. Lett. 6, 117–118 (1981).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vogel, K. R., Dinneen, T. P., Gallagher, A. & Hall, J. L. Narrow-line Doppler cooling of strontium to the recoil limit. IEEE Trans. Instrum. Meas. 48, 618–621 (1999).

    CAS 
    Article 

    Google Scholar
     

  • McFerran, J. J. & Luiten, A. N. Fractional frequency instability in the 10−14 range with a thermal beam optical frequency reference. J. Opt. Soc. Am. B 27, 277–285 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • van Rees, A. et al. Ring resonator enhanced mode-hop-free wavelength tuning of an integrated extended-cavity laser. Opt. Express 28, 5669–5683 (2020).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Piprek, J., Abraham, P. & Bowers, J. E. Self-consistent analysis of high-temperature effects on strained-layer multiquantum-well InGaAsP-InP lasers. IEEE J. Quantum Electron. 36, 366–374 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Coldren, L. A., Corzine, S. W. & Mashanovitch, M. L. Diode Lasers and Photonic Integrated Circuits (John Wiley & Sons, 2012).

  • Braithwaite, J., Silver, M., Wilkinson, V. A., O’Reilly, E. P. & Adams, A. R. Role of radiative and nonradiative processes on the temperature sensitivity of strained and unstrained 1.5 μm InGaAs(P) quantum well lasers. Appl. Phys. Lett. 67, 3546–3548 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Childs, G. N., Brand, S. & Abram, R. A. Intervalence band absorption in semiconductor laser materials. Semicond. Sci. Technol. 1, 116–120 (1986).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Adams, A. R., O’Reilly, E. P. & Silver, M. in Semiconductor Lasers I (ed. Kapon, E.) 123–176 (Academic Press, 1999).

  • Derry, P. L. et al. Low threshold current high-temperature operation of InGaAs/AlGaAs strained-quantum-well lasers. IEEE Photon. Technol. Lett. 4, 1189–1191 (1992).

    ADS 
    Article 

    Google Scholar
     

  • Franken, C. A. A. et al. Hybrid-integrated diode laser in the visible spectral range. Opt. Lett. 46, 4904–4907 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Chang, L., Liu, S. & Bowers, J. E. Integrated optical frequency comb technologies. Nat. Photon. 16, 95–108 (2022).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nat. Photon. 13, 60–67 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lu, X., Moille, G., Rao, A., Westly, D. A. & Srinivasan, K. Efficient photoinduced second-harmonic generation in silicon nitride photonics. Nat. Photon. 15, 131–136 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kues, M. et al. Quantum optical microcombs. Nat. Photon. 13, 170–179 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Reimer, C. et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science 351, 1176–1180 (2016).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Poulton, C. V. et al. Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths. Opt. Lett. 42, 21–24 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • D’Agostino, D. et al. Low-loss passive waveguides in a generic InP foundry process via local diffusion of zinc. Opt. Express 23, 25143–25157 (2015).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Ferguson, A. et al. Low-loss, single-mode GaAs/AlGaAs waveguides with large core thickness. IEE Proc. Optoelectron. 153, 51–56 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Biberman, A., Shaw, M. J., Timurdogan, E., Wright, J. B. & Watts, M. R. Ultralow-loss silicon ring resonators. Opt. Lett. 37, 4236–4238 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bellegarde, C. et al. Improvement of sidewall roughness of submicron SOI waveguides by hydrogen plasma and annealing. IEEE Photon. Technol. Lett. 30, 591–594 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Chauhan, N. et al. Visible light photonic integrated Brillouin laser. Nat. Commun. 12, 4685 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Wan, Y. et al. High speed evanescent quantum-dot lasers on Si. Laser Photon. Rev. 15, 2100057 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Wang, H., Wu, L., Yuan, Z. & Vahala, K. in Conference on Lasers and Electro-Optics (eds. Kang, J. et al.) SF2O. 2 (Optica Publishing Group, 2021).

  • Levin, Y. Fluctuation–dissipation theorem for thermo-refractive noise. Phys. Lett. A 372, 1941–1944 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Kaloyeros, A. E., Pan, Y., Goff, J. & Arkles, B. Review—Silicon nitride and silicon nitride-rich thin film technologies: state-of-the-art processing technologies, properties, and applications. ECS J. Solid State Sci. Technol. 9, 063006 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Arx, M. V., Paul, O. & Baltes, H. Process-dependent thin-film thermal conductivities for thermal CMOS MEMS. J. Microelectromech. Syst. 9, 136–145 (2000).

    Article 

    Google Scholar
     

  • Source link