May 8, 2024
Generation of genuine entanglement up to 51 superconducting qubits – Nature

Generation of genuine entanglement up to 51 superconducting qubits – Nature

  • Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2010).

  • Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).

    Article 
    MathSciNet 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    Article 
    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Greenberger, D. M., Horne, M. A., Shimony, A. & Zeilinger, A. Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990).

    Article 
    MathSciNet 
    MATH 
    ADS 

    Google Scholar
     

  • Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Buluta, I. & Nori, F. Quantum simulators. Science 326, 108–111 (2009).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Flammia, S. T. & Liu, Y.-K. Direct fidelity estimation from few Pauli measurements. Phys. Rev. Lett. 106, 230501 (2011).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Ferguson, R. R. et al. Measurement-based variational quantum eigensolver. Phys. Rev. Lett. 126, 220501 (2021).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zhu, Q. & et al. Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Sci. Bull. 67, 240–245 (2022).

    Article 

    Google Scholar
     

  • Song, C. et al. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science 365, 574–577 (2019).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Pogorelov, I. et al. Compact ion-trap quantum computing demonstrator. PRX Quant. 2, 020343 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Omran, A. et al. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science 365, 570–574 (2019).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Wang, X.-L. et al. 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett. 120, 260502 (2018).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Gong, M. et al. Genuine 12-qubit entanglement on a superconducting quantum processor. Phys. Rev. Lett. 122, 110501 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Gühne, O., Tóth, G., Hyllus, P. & Briegel, H. J. Bell inequalities for graph states. Phys. Rev. Lett. 95, 120405 (2005).

    Article 
    MathSciNet 
    PubMed 
    ADS 

    Google Scholar
     

  • Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001).

    Article 
    CAS 
    PubMed 
    MATH 
    ADS 

    Google Scholar
     

  • Briegel, H. J., Browne, D. E., Dür, W., Raussendorf, R. & Van den Nest, M. Measurement-based quantum computation. Nat. Phys. 5, 19–26 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Raussendorf, R., Browne, D. E. & Briegel, H. J. Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Greganti, C., Roehsner, M.-C., Barz, S., Morimae, T. & Walther, P. Demonstration of measurement-only blind quantum computing. New J. Phys. 18, 013020 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1–75 (2009).

    Article 
    MathSciNet 
    ADS 

    Google Scholar
     

  • Tiurev, K. & Sørensen, A. S. Fidelity measurement of a multiqubit cluster state with minimal effort. Phys. Rev. Res. 4, 033162 (2022).

  • Ye, Y. et al. Realization of high-fidelity controlled-phase gates in extensible superconducting qubits design with a tunable coupler. Chin. Phys. Lett. 38, 100301 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Neill, C. et al. A blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360, 195–199 (2018).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Jungnitsch, B., Moroder, T. & Gühne, O. Taming multiparticle entanglement. Phys. Rev. Lett. 106, 190502 (2011).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Jungnitsch, B., Moroder, T. & Gühne, O. Entanglement witnesses for graph states: general theory and examples. Phys. Rev. A 84, 032310 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Salathé, Y. et al. Low-latency digital signal processing for feedback and feedforward in quantum computing and communication. Phys. Rev. Appl. 9, 034011 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Andersen, C. K. et al. Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits. npj Quantum Inf. 5, 69 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Yan, Z. et al. Strongly correlated quantum walks with a 12-qubit superconducting processor. Science 364, 753–756 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Bravyi, S., Sheldon, S., Kandala, A., Mckay, D. C. & Gambetta, J. M. Mitigating measurement errors in multiqubit experiments. Phys. Rev. A 103, 042605 (2021).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Zhu, C., Byrd, R. H., Lu, P. & Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23, 550–560 (1997).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Aleksandrowicz, G. et al. Qiskit: an open-source framework for quantum computing (0.7.2). Zenodo https://doi.org/10.5281/zenodo.2562111 (2019).

  • Source link