May 6, 2024
Human distal airways contain a multipotent secretory cell that can regenerate alveoli – Nature

Human distal airways contain a multipotent secretory cell that can regenerate alveoli – Nature

  • Burney, P. G., Patel, J., Newson, R., Minelli, C. & Naghavi, M. Global and regional trends in COPD mortality, 1990-2010. Eur. Respir. J. 45, 1239–1247 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basil, M. C. et al. The cellular and physiological basis for lung repair and regeneration: past, present, and future. Cell Stem Cell 26, 482–502 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zepp, J. A. & Morrisey, E. E. Cellular crosstalk in the development and regeneration of the respiratory system. Nat. Rev. Mol. Cell Biol. 20, 551–566 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hogan, B. L. et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15, 123–138 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weibel, E. R., Sapoval, B. & Filoche, M. Design of peripheral airways for efficient gas exchange. Respir. Physiol. Neurobiol. 148, 3–21 (2005).

    PubMed 

    Google Scholar
     

  • Weibel, E. R. & Gomez, D. M. Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science 137, 577–585 (1962).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Have‐Opbroek, A. A. W., Otto‐Verberne, C. J. M., Dubbeldam, J. A. & Dÿkman, J. H. The proximal border of the human respiratory unit, as shown by scanning and transmission electron microscopy and light microscopical cytochemistry. Anat. Rec. 229, 339–354 (1991).

    PubMed 

    Google Scholar
     

  • Rock, J. R., Randell, S. H. & Hogan, B. L. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis. Models Mech. 3, 545–556 (2010).

    CAS 

    Google Scholar
     

  • Mercer, R. R., Russell, M. L., Roggli, V. L. & Crapo, J. D. Cell number and distribution in human and rat airways. Am. J. Respir. Cell Mol. Biol. 10, 613–624 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Ryu, J. H., Myers, J. L. & Swensen, S. J. Bronchiolar disorders. Am. J. Respir. Crit. Care Med. 168, 1277–1292 (2003).

    PubMed 

    Google Scholar
     

  • Hogg, J. C., Macklem, P. T. & Thurlbeck, W. M. Site and nature of airway obstruction in chronic obstructive lung disease. New Engl. J. Med. 278, 1355–1360 (1968).

    CAS 
    PubMed 

    Google Scholar
     

  • Koo, H.-K. K. et al. Small airways disease in mild and moderate chronic obstructive pulmonary disease: a cross-sectional study. Lancet Respir. Med. 6, 591–602 (2018).

    PubMed 

    Google Scholar
     

  • Visscher, D. W. & Myers, J. L. Bronchiolitis: the pathologist’s perspective. Proc. Am. Thorac. Soc. 3, 41–47 (2006).

    PubMed 

    Google Scholar
     

  • Fretzayas, A. & Moustaki, M. Etiology and clinical features of viral bronchiolitis in infancy. World J. Pediatr. 13, 293–299 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gómez, R., Colás, C., Sebastián, A. & Arribas, J. Respiratory repercussions in adults with a history of infantile bronchiolitis. Ann. Allergy Asthma Immunol. 93, 447–451 (2004).

    PubMed 

    Google Scholar
     

  • Verleden, S. E. et al. Small airway loss in the physiologically ageing lung: a cross-sectional study in unused donor lungs. Lancet Respir. Med. 9, 167–174 (2020).

    PubMed 

    Google Scholar
     

  • Montoro, D. T. et al. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 560, 319–324 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hyde, D. M., Samuelson, D. A., Blakeney, W. H. & Kosch, P. C. A correlative light microscopy, transmission and scanning electron microscopy study of the ferret lung. Scan. Electron Microsc. 3, 891–898 (1979).


    Google Scholar
     

  • Sterner-Kock, A., Kock, M., Braun, R. & Hyde, D. M. Ozone-induced epithelial injury in the ferret is similar to nonhuman primates. Am. J. Respir. Crit. Care Med. 162, 1152–1156 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Vinegar, A., Sinnett, E. E., Kosch, P. C. & Miller, M. L. Pulmonary physiology of the ferret and its potential as a model for inhalation toxicology. Lab. Anim. Sci. 35, 246––250 (1985).

    PubMed 

    Google Scholar
     

  • Bal, H. S. & Ghoshal, N. G. Morphology of the terminal bronchiolar region of common laboratory mammals. Lab. Anim. 22, 76–82 (1988).

    CAS 
    PubMed 

    Google Scholar
     

  • Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barkauskas, C. E. et al. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest. 123, 3025–3036 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nabhan, A. N., Brownfield, D. G., Harbury, P. B., Krasnow, M. A. & Desai, T. J. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science 359, 1118–1123 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zacharias, W. J. et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 555, 251–255 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genom. 19, 477 (2018).


    Google Scholar
     

  • Rock, J. R. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106, 12771–12775 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCauley, K. B. et al. Single-cell transcriptomic profiling of pluripotent stem cell-derived SCGB3A2+ airway epithelium. Stem Cell Rep. 10, 1579–1595 (2018).

    CAS 

    Google Scholar
     

  • McCauley, K. B. et al. Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell 20, 844–857 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacob, A. et al. Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell 21, 472–488 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, A. J. et al. In vitro and in vivo development of the human airway at single-cell resolution. Dev. Cell 53, 117–128 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacob, A. et al. Derivation of self-renewing lung alveolar epithelial type II cells from human pluripotent stem cells. Nat. Protoc. 14, 3303–3332 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hawkins, F. et al. Prospective isolation of NKX2-1-expressing human lung progenitors derived from pluripotent stem cells. J. Clin. Invest. 127, 2277–2294 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guseh, J. S. et al. Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development 136, 1751–1759 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morimoto, M., Nishinakamura, R., Saga, Y. & Kopan, R. Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development 139, 4365–4373 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rock, J. R. et al. Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell 8, 639–648 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stupnikov, M. R., Yang, Y., Mori, M., Lu, J. & Cardoso, W. V. Jagged and Delta-like ligands control distinct events during airway progenitor cell differentiation. eLife 8, e50487 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsao, P. N. et al. Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development 136, 2297–2307 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Geling, A., Steiner, H., Willem, M., Bally‐Cuif, L. & Haass, C. A γ‐secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep. 3, 688–694 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frank, D. B. et al. Emergence of a wave of Wnt signaling that regulates lung alveologenesis by controlling epithelial self-renewal and differentiation. Cell Rep. 17, 2312–2325 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zepp, J. A. et al. Distinct mesenchymal lineages and niches promote epithelial self-renewal and myofibrogenesis in the lung. Cell 170, 1134–1148 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chapin, C. et al. Distribution and surfactant association of carcinoembryonic cell adhesion molecule 6 in human lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 302, L216–L225 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Lin, S. E. et al. Expression of human carcinoembryonic antigen-related cell adhesion molecule 6 and alveolar progenitor cells in normal and injured lungs of transgenic mice. Physiol. Rep. 3, e12657 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shikotra, A. et al. A CEACAM6-high airway neutrophil phenotype and ceacam6-high epithelial cells are features of severe asthma. J. Immunol. 198, 3307–3317 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Lin, V. Y. et al. Excess mucus viscosity and airway dehydration impact COPD airway clearance. Eur. Respir. J. 55, 1900419 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raju, S. V. et al. A ferret model of COPD-related chronic bronchitis. JCI Insight 1, e87536 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stanford, D. et al. Airway remodeling in ferrets with cigarette smoke induced COPD using microCT Imaging. Am. J. Physiol. Lung Cell. Mol. Physiol. 319, L11–L20 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Ganguly, K. et al. Secreted phosphoprotein 1 is a determinant of lung function development in mice. Am. J. Respir. Cell Mol. 51, 637–651 (2014).


    Google Scholar
     

  • Calabrese, D. R. et al. Dectin-1 genetic deficiency predicts chronic lung allograft dysfunction and death. JCI Insight 4, e133083 (2019).

    PubMed Central 

    Google Scholar
     

  • Regeling, A. et al. HSPA6 is an ulcerative colitis susceptibility factor that is induced by cigarette smoke and protects intestinal epithelial cells by stabilizing anti-apoptotic Bcl-XL. Biochim. Biophys. Acta 1862, 788–796 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, C. F. et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823–835 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Choi, J. et al. Release of Notch activity coordinated by IL-1β signalling confers differentiation plasticity of airway progenitors via Fosl2 during alveolar regeneration. Nat. Cell Biol. 23, 953–966 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Todd, J. L. & Palmer, S. M. Bronchiolitis obliterans syndrome: the final frontier for lung transplantation. Chest 140, 502–508 (2011).

    PubMed 

    Google Scholar
     

  • Verleden, S. E., Sacreas, A., Vos, R., Vanaudenaerde, B. M. & Verleden, G. M. Advances in understanding bronchiolitis obliterans after lung transplantation. Chest 150, 219–225 (2016).

    PubMed 

    Google Scholar
     

  • Verleden, S. E. et al. The site and nature of airway obstruction after lung transplantation. Am. J. Respir. Crit. Care Med. 189, 292–300 (2014).

    PubMed 

    Google Scholar
     

  • Ghorani, V., Boskabady, M. H., Khazdair, M. R. & Kianmeher, M. Experimental animal models for COPD: a methodological review. Tob. Induc. Dis. 15, 25 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Diamond, J. M. et al. Clinical risk factors for primary graft dysfunction after lung transplantation. Am. J. Respir. Crit. Care Med. 187, 527–534 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kiselev, V. Y. et al. SC3: consensus clustering of single-cell RNA-seq data. Nat. Methods 14, 483–486 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zappia, L. & Oshlack, A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. Gigascience 7, giy083 (2018).

    PubMed Central 

    Google Scholar
     

  • Van den Berge, K. et al. Trajectory-based differential expression analysis for single-cell sequencing data. Nat. Commun. 11, 1201 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).


    Google Scholar
     

  • Gotoh, S. et al. Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Rep. 3, 394–403 (2014).

    CAS 

    Google Scholar
     

  • Kathiriya, J. J. et al. Human alveolar type 2 epithelium transdifferentiates into metaplastic KRT5+ basal cells. Nat. Cell Biol. 24, 10–23 (2022).

  • Source link