April 26, 2024
Observing polymerization in 2D dynamic covalent polymers – Nature

Observing polymerization in 2D dynamic covalent polymers – Nature

  • Wang, W. & Schlüter, A. D. Synthetic 2D polymers: a critical perspective and a look into the future. Macromol. Rapid Commun. 40, 1800719 (2019).


    Google Scholar
     

  • Feng, X. & Schlüter, A. D. Towards macroscopic crystalline 2D polymers. Angew. Chem. Int. Ed. Engl. 57, 13748–13763 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Servalli, M. & Schlüter, A. D. Synthetic two-dimensional polymers. Annu. Rev. Mater. Res. 47, 361–389 (2017).

    CAS 

    Google Scholar
     

  • Payamyar, P., King, B. T., Öttinger, H. C. & Schlüter, A. D. Two-dimensional polymers: concepts and perspectives. Chem. Commun. 52, 18–34 (2016).

    CAS 

    Google Scholar
     

  • Colson, J. W. & Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 5, 453–465 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Sakamoto, J., van Heijst, J., Lukin, O. & Schlüter, A. D. Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. Engl. 48, 1030–1069 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. Homochiral 2D porous covalent organic frameworks for heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 138, 12332–12335 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Ding, S.-Y. et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Dong, R. et al. Large-area, free-standing, two-dimensional supramolecular polymer single-layer sheets for highly efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. Engl. 54, 12058–12063 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dogru, M. et al. A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angew. Chem. Int. Ed. Engl. 52, 2920–2924 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem. Int. Ed. Engl. 47, 8826–8830 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. et al. Tuneable near white-emissive two-dimensional covalent organic frameworks. Nat. Commun. 9, 2335 (2018).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • DeBlase, C. R., Silberstein, K. E., Truong, T.-T., Abruña, H. D. & Dichtel, W. R. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 135, 16821–16824 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Furukawa, H. & Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Liu, W. et al. A two-dimensional conjugated aromatic polymer via C–C coupling reaction. Nat. Chem. 9, 563–570 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bin, H. et al. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 7, 13651 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Liu, K. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994–1000 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lange, R. Z., Hofer, G., Weber, T. & Schlüter, A. D. A two-dimensional polymer synthesized through topochemical [2 + 2]-cycloaddition on the multigram scale. J. Am. Chem. Soc. 139, 2053–2059 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kissel, P., Murray, D. J., Wulftange, W. J., Catalano, V. J. & King, B. T. A nanoporous two-dimensional polymer by single-crystal-to-single-crystal photopolymerization. Nat. Chem. 6, 774–778 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kory, M. J. et al. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat. Chem. 6, 779–784 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlüter, A. D. Mastering polymer chemistry in two dimensions. Commun. Chem. 3, 12 (2020).


    Google Scholar
     

  • Grill, L. & Hecht, S. Covalent on-surface polymerization. Nat. Chem. 12, 115–130 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhong, Y. et al. Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices. Science 366, 1379–1384 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Kissel, P. et al. A two-dimensional polymer prepared by organic synthesis. Nat. Chem. 4, 287–291 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, A. M. et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 361, 52–57 (2018).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Evans, A. M. et al. Emissive single-crystalline boroxine-linked colloidal covalent organic frameworks. J. Am. Chem. Soc. 141, 19728–19735 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martínez-Abadía, M. & Mateo-Alonso, A. Structural approaches to control interlayer interactions in 2D covalent organic frameworks. Adv. Mater. 32, 2002366 (2020).


    Google Scholar
     

  • Li, H. et al. Nucleation–elongation dynamics of two-dimensional covalent organic frameworks. J. Am. Chem. Soc. 142, 1367–1374 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, H. et al. Nucleation and growth of covalent organic frameworks from solution: the example of COF-5. J. Am. Chem. Soc. 139, 16310–16318 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, B. J. & Dichtel, W. R. Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. J. Am. Chem. Soc. 136, 8783–8789 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, X.-H. et al. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid–vapor interface reactions. J. Am. Chem. Soc. 135, 10470–10474 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C., Yu, Y., Zhang, W., Zeng, Q. & Lei, S. Room-temperature synthesis of covalent organic frameworks with a boronic ester linkage at the liquid/solid interface. Chem. Eur. J. 22, 18412–18418 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grossmann, L. et al. On-surface photopolymerization of two-dimensional polymers ordered on the mesoscale. Nat. Chem. 13, 730–736 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlüter, A. D., Weber, T. & Hofer, G. How to use X-ray diffraction to elucidate 2D polymerization propagation in single crystals. Chem. Soc. Rev. 49, 5140–5158 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crawford, A. G. et al. Synthesis of 2- and 2,7-functionalized pyrene derivatives: an application of selective C–H borylation. Chem. Eur. J. 18, 5022–5035 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew. Chem. Int. Ed. Engl. 48, 5439–5442 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Medina, D. D. et al. Room temperature synthesis of covalent–organic framework films through vapor-assisted conversion. J. Am. Chem. Soc. 137, 1016–1019 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dienstmaier, J. F. et al. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 6, 7234–7242 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bilbao, N. et al. Anatomy of on-surface synthesized boroxine two-dimensional polymers. ACS Nano 14, 2354–2365 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sassi, M., Oison, V., Debierre, J.-M. & Humbel, S. Modelling the two-dimensional polymerization of 1,4-benzene diboronic acid on a Ag surface. ChemPhysChem 10, 2480–2485 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gasser, U., Weeks, E. R., Schofield, A., Pusey, P. N. & Weitz, D. A. Real-space imaging of nucleation and growth in colloidal crystallization. Science 292, 258–262 (2001).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Cai, Z.-F. et al. Electric-field-mediated reversible transformation between supramolecular networks and covalent organic frameworks. J. Am. Chem. Soc. 141, 11404–11408 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhan, G., Cai, Z.-F., Martínez-Abadía, M., Mateo-Alonso, A. & De Feyter, S. Real-time molecular-scale imaging of dynamic network switching between covalent organic frameworks. J. Am. Chem. Soc. 142, 5964–5968 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, D. et al. Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014–1018 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Viswanathan, R. & Bauer, C. L. Kinetics of grain boundary migration in copper bicrystals with [001] rotation axes. Acta Metall. 21, 1099–1109 (1973).

    CAS 

    Google Scholar
     

  • Sun, R. C. & Bauer, C. L. Tilt boundary migration in NaCl bicrystals. Acta Metall. 18, 639–647 (1970).

    CAS 

    Google Scholar
     

  • Rollett, A. D., Srolovitz, D. J. & Anderson, M. P. Simulation and theory of abnormal grain growth—anisotropic grain boundary energies and mobilities. Acta Metall. 37, 1227–1240 (1989).

    CAS 

    Google Scholar
     

  • Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175–2196 (2009).

    CAS 
    MATH 
    ADS 

    Google Scholar
     

  • Marek, A. et al. The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science. J. Phys. Condens. Matter 26, 213201 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, V. W.-Z. et al. ELSI: a unified software interface for Kohn–Sham electronic structure solvers. Comput. Phys. Commun. 222, 267–285 (2018).

    CAS 
    ADS 

    Google Scholar
     

  • Tkatchenko, A., DiStasio, R. A., Car, R. & Scheffler, M. Accurate and efficient method for many-body van der Waals interactions. Phys. Rev. Lett. 108, 236402 (2012).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Ambrosetti, A., Reilly, A. M., DiStasio, R. A. Jr & Tkatchenko, A. Long-range correlation energy calculated from coupled atomic response functions. J. Chem. Phys. 140, 18A508 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bitzek, E., Koskinen, P., Gähler, F., Moseler, M. & Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jorgensen, W. L. & Tirado-Rives, J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    CAS 

    Google Scholar
     

  • Hourahine, B. et al. DFTB plus, a software package for efficient approximate density functional theory based atomistic simulations. J. Chem. Phys. 152, 124101 (2020).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Grimme, S., Bannwarth, C. & Shushkov, P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1–86). J. Chem. Theory Comput. 13, 1989–2009 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rüger, R. et al. AMS v.2021.1 (SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, the Netherlands, 2021); http://www.scm.com

  • Bannwarth, C. et al. Extended tight-binding quantum chemistry methods. WIREs Comput. Mol. Sci. 11, e1493 (2021).

    CAS 

    Google Scholar
     

  • Spicher, S. & Grimme, S. Robust atomistic modeling of materials, organometallic, and biochemical systems. Angew. Chem. Int. Ed. Engl. 59, 15665–15673 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link