May 19, 2024
Linear-in-temperature resistivity for optimally superconducting (Nd,Sr)NiO2 – Nature

Linear-in-temperature resistivity for optimally superconducting (Nd,Sr)NiO2 – Nature

  • Lee, P. A., Nagaosa, N. & Wen, X. G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Fernandes, R. M. et al. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature 601, 35–44 (2022).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Osada, M. et al. Nickelate superconductivity without rare-earth magnetism: (La,Sr)NiO2. Adv. Mater. 2021, 2104083 (2021).

  • Pan, G. A. et al. Superconductivity in a quintuple-layer square-planar nickelate. Nat. Mater. 21, 160–164 (2022).

  • Zeng, S. et al. Superconductivity in infinite-layer nickelate La1−xCaxNiO2 thin films. Sci. Adv. 8, eabl9927 (2022).

  • Li, D. et al. Superconducting dome in Nd1–xSrxNiO2 infinite layer films. Phys. Rev. Lett. 125, 027001 (2020).

  • Zeng, S. et al. Phase diagram and superconducting dome of infinite-layer Nd1–xSrxNiO2 thin films. Phys. Rev. Lett. 125, 147003 (2020).

  • Lee, K. et al. Aspects of the synthesis of thin film superconducting infinite-layer nickelates. APL Mater. 8, 041107 (2020).

  • Takagi, H. et al. Superconductor-to-nonsuperconductor transition in (La1–xSrx)2CuO4 as investigated by transport and magnetic measurements. Phys. Rev. B 40, 2254–2261 (1989).

  • Lee, K. W. & Pickett, W. E. Infinite-layer LaNiO2: Ni1+ is not Cu2+. Phys. Rev. B 70, 165109 (2004).

  • Botana, A. S. & Norman, M. R. Similarities and differences between LaNiO2 and CaCuO2 and implications for superconductivity. Phys. Rev. X 10, 011024 (2020).

  • Hepting, M. et al. Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat. Mater. 19, 381–385 (2020).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Goodge, B. H. et al. Doping evolution of the Mott-Hubbard landscape in infinite-layer nickelates. Proc. Natl Acad. Sci. USA 118, e2007683118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hayward, M. A., Green, M. A., Rosseinsky, M. J. & Sloan, J. Sodium hydride as a powerful reducing agent for topotactic oxide deintercalation: synthesis and characterization of the nickel(I) oxide LaNiO2. J. Am. Chem. Soc. 121, 8843–8854 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Hayward, M. A. & Rosseinsky, M. J. Synthesis of the infinite layer Ni(I) phase NdNiO2+x by low temperature reduction of NdNiO3 with sodium hydride. Solid State Sci. 5, 839–850 (2003).

  • Wang, B.-X. et al. Synthesis and characterization of bulk Nd1–xSrxNiO2 and Nd1–xSrxNiO3. Phys. Rev. Mater. 4, 084409 (2020).

  • Greene, R. L., Mandal, P. R., Poniatowski, N. R. & Sarkar, T. The strange metal state of the electron-doped cuprates. Annu. Rev. Condens. Matter Phys. 11, 213–229 (2020).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Leonov, I., Skornyakov, S. L. & Savrasov, S. Y. Lifshitz transition and frustration of magnetic moments in infinite-layer NdNiO2 upon hole doping. Phys. Rev. B 101, 241108(R) (2020).

    Article 
    ADS 

    Google Scholar
     

  • Li, Y. et al. Impact of cation stoichiometry on the crystalline structure and superconductivity in nickelates. Front. Phys. 9, 719534 (2021).

  • Gao, Q., Zhao, Y., Zhou, X. J. & Zhu, Z. Preparation of superconducting thin films of infinite-layer nickelate Nd0.8Sr0.2NiO2. Chinese Phys. Lett. 38, 077401 (2021).

  • Ren, X. et al. Superconductivity in infinite-layer Pr0.8Sr0.2NiO2 films on different substrates. Preprint at https://arxiv.org/abs/2109.05761 (2021).

  • Ding, X. et al. Stability of superconducting Nd0.8Sr0.2NiO2 thin films. Sci. China-Phys. Mech. Astron. 65, 267411 (2022).

  • Attfield, J. P., Kharlanov, A. L. & McAllister, J. A. Cation effects in doped La2CuO4 superconductors. Nature 394, 157–159 (1998).

  • Kim, G. et al. Optical conductivity and superconductivity in highly overdoped La2−xCaxCuO4 thin films. Proc. Natl Acad. Sci. USA 118, e2106170118 (2021).

  • Guo, Q., Farokhipoor, S., Magén, C., Rivadulla, F. & Noheda, B. Tunable resistivity exponents in the metallic phase of epitaxial nickelates. Nat. Commun. 11, 2949 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Kitatani, M. et al. Nickelate superconductors—a renaissance of the one-band Hubbard model. npj Quantum Mater. 5, 59 (2020).

  • Nomura, Y. et al. Formation of a two-dimensional single-component correlated electron system and band engineering in the nickelate superconductor NdNiO2. Phys. Rev. B. 100, 205138 (2019).

  • Zhang, G. M., Yang, Y. F. & Zhang, F. C. Self-doped Mott insulator for parent compounds of nickelate superconductors. Phys. Rev. B. 101, 020501(R) (2020).

    Article 
    ADS 

    Google Scholar
     

  • Hsu, Y. T. et al. Insulator-to-metal crossover near the edge of the superconducting dome in Nd1–xSrxNiO2. Phys. Rev. Res. 3, L042015 (2021).

  • Rossi, M. et al. A broken translational symmetry state in an infinite-layer nickelate. Nat. Phys. 18, 869–873 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Krieger, G. et al. Charge and spin order dichotomy in NdNiO2 driven by the capping layer. Phys. Rev. Lett. 129, 027002 (2022).

  • Tam, C. C. et al. Charge density waves in infinite-layer NdNiO2 nickelates. Nat. Mater. 21, 1116–1120 (2022).

  • Takagi, H. et al. Systematic evolution of temperature-dependent resistivity in La2–xSrxCuO4. Phys. Rev. Lett. 69, 2975–2978 (1992).

  • Boebinger, G. S. et al. Insulator-to-metal crossover in the normal state of La2–xSrxCuO4 near optimum doping. Phys. Rev. Lett. 77, 5417–5420 (1996).

  • Hussey, N. E. Phenomenology of the normal state in-plane transport properties of high-Tc cuprates. J. Phys. Condens. Matter 20, 123201 (2008).

  • Hwang, H. Y. et al. Scaling of the temperature dependent Hall effect in La2–xSrxCuO4. Phys. Rev. Lett. 72, 2636–2639 (1994).

  • Fukuzumi, Y., Mizuhashi, K., Takenaka, K. & Uchida, S. Universal superconductor-insulator transition and Tc depression in Zn-substituted high-Tc cuprates in the underdoped regime. Phys. Rev. Lett. 76, 684–687 (1996).

  • Cooper, R. A. et al. Anomalous criticality in the electrical resistivity of La2–xSrxCuO4. Science 323, 603–607 (2009).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Bruin, J. A. N., Sakai, H., Perry, R. S. & Mackenzie, A. P. Similarity of scattering rates in metals showing T-linear resistivity. Science 339, 804–807 (2013).

  • Harvey, S. P. et al. Evidence for nodal superconductivity in infinite-layer nickelates. Preprint at https://arxiv.org/abs/2201.12971 (2022).

  • Zakharov, A. A., Lazarev, V. B. & Shaplygin, I. S. Interaction of lanthanide sesquioxides with copper and nickel oxide. J. Inorg. Chem. 29, 454–456 (1984).


    Google Scholar
     

  • Aivazov, M. I., Sarkisyan, A. G., Domashnev, I. A. & Gurov, S. V. Synthesis and investigation of compositions in the cross section TiO-NiO. Inorg. Mater. 7, 1389–1391 (1971).


    Google Scholar
     

  • Source link