May 3, 2024
Locomotion activates PKA through dopamine and adenosine in striatal neurons – Nature

Locomotion activates PKA through dopamine and adenosine in striatal neurons – Nature

  • Graybiel, A. M., Aosaki, T., Flaherty, A. W. & Kimura, M. The basal ganglia and adaptive motor control. Science 265, 1826–1831 (1994).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mink, J. W. The basal ganglia: focused selection and inhibition of competing motor programs. Prog. Neurobiol. 50, 381–425 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerfen, C. R. & Surmeier, D. J. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34, 441–466 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klaus, A., Alves Da Silva, J. & Costa, R. M. What, if, and when to move: basal ganglia circuits and self-paced action initiation. Annu. Rev. Neurosci. 42, 459–483 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerfen, C. R. et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432 (1990).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kreitzer, A. C. & Malenka, R. C. Striatal plasticity and basal ganglia circuit function. Neuron 60, 543–554 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tritsch, N. X. & Sabatini, B. L. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76, 33–50 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yasuda, R. et al. Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nat. Neurosci. 9, 283–291 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Yellen, G. & Mongeon, R. Quantitative two-photon imaging of fluorescent biosensors. Curr. Opin. Chem. Biol. 27, 24–30 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, L. et al. A highly sensitive A-kinase activity reporter for imaging neuromodulatory events in awake mice. Neuron 99, 665–679.e5 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, W. et al. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science 369, eabb0556 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Kravitz, A. V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yttri, E. A. & Dudman, J. T. Opponent and bidirectional control of movement velocity in the basal ganglia. Nature 533, 402–406 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Redgrave, P. et al. Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat. Rev. Neurosci. 11, 760–772 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeLong, M. R. & Wichmann, T. Circuits and circuit disorders of the basal ganglia. Arch. Neurol. 64, 20–24 (2007).

    PubMed 

    Google Scholar
     

  • Surmeier, D. J., Plotkin, J. & Shen, W. Dopamine and synaptic plasticity in dorsal striatal circuits controlling action selection. Curr. Opin. Neurobiol. 19, 621–628 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lovinger, D. M. Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology 58, 951–961 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howe, M. W. & Dombeck, D. A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 535, 505–510 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicola, S. M., James Surmeier, D. & Malenka, R. C. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu. Rev. Neurosci. 23, 185–215 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Lahiri, A. K. & Bevan, M. D. Dopaminergic transmission rapidly and persistently enhances excitability of D1 receptor-expressing striatal projection neurons. Neuron 106, 277–290.e6 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Surmeier, D. J., Ding, J., Day, M., Wang, Z. & Shen, W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30, 228–235 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Shen, W., Flajolet, M., Greengard, P. & Surmeier, D. J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848–851 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fink, J. S. et al. Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Mol. Brain. Res. 14, 186–195 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Morelli, M., Simola, N., Popoli, P. & Carta, A. R. in Handbook of Basal Ganglia Structure and Function 1st edn, Vol. 20 (eds Steiner, H. & Tseng, K. Y.) 201–218 (Elsevier, 2016).

  • Schiffmann, S. N., Fisone, G., Moresco, R., Cunha, R. A. & Ferré, S. Adenosine A2A receptors and basal ganglia physiology. Prog. Neurobiol. 83, 277–292 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Higley, M. J. & Sabatini, B. L. Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat. Neurosci. 13, 958–966 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Q. & Zhou, F. M. cAMP-producing chemogenetic and adenosine A2a receptor activation inhibits the inwardly rectifying potassium current in striatal projection neurons. Neuropharmacology 148, 229–243 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Ledent, C. et al. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 388, 674–678 (1997).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shen, H. Y. et al. A critical role of the adenosine A2A receptor in extrastriatal neurons in modulating psychomotor activity as revealed by opposite phenotypes of striatum and forebrain A2A receptor knock-outs. J. Neurosci. 28, 2970–2975 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, C., Gupta, J., Chen, J. F. & Yin, H. H. Genetic deletion of A2A adenosine receptors in the striatum selectively impairs habit formation. J. Neurosci. 29, 15100–15103 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopes, C. R., Lourenço, V. S., Tomé, Â. R., Cunha, R. A. & Canas, P. M. Use of knockout mice to explore CNS effects of adenosine. Biochem. Pharmacol. 187, 114367 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Fisone, G., Borgkvist, A. & Usiello, A. Caffeine as a psychomotor stimulant: mechanism of action. Cell. Mol. Life Sci. 61, 857–872 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Emson, P. C., Waldvogel, H. J. & Faull, R. L. M. in Handbook of Basal Ganglia Structure and Function 1st edn, Vol. 20 (eds Steiner, H. & Tseng, K. Y.) 75–96 (Elsevier, 2010).

  • Massengill, C. I., Day-Cooney, J., Mao, T. & Zhong, H. Genetically encoded sensors towards imaging cAMP and PKA activity in vivo. J. Neurosci. Methods 362, 109298 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. J. et al. Cell-type-specific asynchronous modulation of PKA by dopamine in learning. Nature 590, 451–456 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S. X. et al. Hypothalamic dopamine neurons motivate mating through persistent cAMP signalling. Nature 597, 245–249 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goto, A. et al. Circuit-dependent striatal PKA and ERK signaling underlies rapid behavioral shift in mating reaction of male mice. Proc. Natl Acad. Sci. USA 112, 6718–6723 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grace, A. A. & Bunney, B. S. The control of firing pattern in nigral dopamine neurons: single spike firing. J. Neurosci. 4, 2866–2876 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marinelli, M. & McCutcheon, J. E. Heterogeneity of dopamine neuron activity across traits and states. Neuroscience 282, 176–197 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Adamantidis, A. R. et al. Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J. Neurosci. 31, 10829–10835 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Da Silva, J. A., Tecuapetla, F., Paixão, V. & Costa, R. M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature 554, 244–248 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Dalton, G. D. & Dewey, W. L. Protein kinase inhibitor peptide (PKI): A family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function. Neuropeptides 40, 23–34 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, W., Ma, L., Yang, G. & Gan, W. B. REM sleep selectively prunes and maintains new synapses in development and learning. Nat. Neurosci. 20, 427–437 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paukert, M. et al. Norepinephrine controls astroglial responsiveness to local circuit activity. Neuron 82, 1263–1270 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, B. M. et al. Dopamine release in nucleus accumbens is under tonic inhibition by adenosine A1 receptors regulated by astrocytic ENT1 and dysregulated by ethanol. J. Neurosci. 42, 1738–1751 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parker, J. G. et al. Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature 557, 177–182 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, G. et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbera, G. et al. Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information. Neuron 92, 202–213 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dobbs, L. K. K. et al. Dopamine regulation of lateral inhibition between striatal neurons gates the stimulant actions of cocaine. Neuron 90, 1100–1113 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beaulieu, J. M. & Gainetdinov, R. R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 63, 182–217 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Domenici, M. R. et al. Adenosine A2A receptor as potential therapeutic target in neuropsychiatric disorders. Pharmacol. Res. 147, 104338 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Levene, M. J., Dombeck, D. A., Kasischke, K. A., Molloy, R. P. & Webb, W. W. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol. 91, 1908–1912 (2004).

    PubMed 

    Google Scholar
     

  • Jung, J. C., Mehta, A. D., Aksay, E., Stepnoski, R. & Schnitzer, M. J. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J. Neurophysiol. 92, 3121–3133 (2004).

    PubMed 

    Google Scholar
     

  • Melander, J. B. et al. Distinct in vivo dynamics of excitatory synapses onto cortical pyramidal neurons and parvalbumin-positive interneurons. Cell Rep. 37, 109972 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Z. et al. A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo. Neuron 110, 770–782.e5 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Franklin, K. B. J. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates (Academic Press, 2007).

  • Source link