May 4, 2024
Odour motion sensing enhances navigation of complex plumes – Nature

Odour motion sensing enhances navigation of complex plumes – Nature

  • Murlis, J., Willis, M. A. & Cardé, R. T. Spatial and temporal structures of pheromone plumes in fields and forests. Physiol. Entomol. 25, 211–222 (2000).

    CAS 

    Google Scholar
     

  • Riffell, J. A., Abrell, L. & Hildebrand, J. G. Physical processes and real-time chemical measurement of the insect olfactory environment. J. Chem. Ecol. 34, 837–853 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Celani, A., Villermaux, E. & Vergassola, M. Odor landscapes in turbulent environments. Phys. Rev. X 4, 041015 (2014).


    Google Scholar
     

  • Connor, E. G., McHugh, M. K. & Crimaldi, J. P. Quantification of airborne odor plumes using planar laser-induced fluorescence. Exp. Fluids 59, 137 (2018).

  • Jung, S. H., Hueston, C. & Bhandawat, V. Odor-identity dependent motor programs underlie behavioral responses to odors. eLife 4, e11092 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez-Salvado, E. et al. Elementary sensory-motor transformations underlying olfactory navigation in walking fruit-flies. eLife 7, e37815 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanzaki, R., Sugi, N. & Shibuya, T. Self-generated zigzag turning of Bombyx mori males during pheromone-mediated upwind walking. Zool. Sci. 9, 515–527 (1992).


    Google Scholar
     

  • Mafra-Neto, A. & Cardé, R. T. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369, 142–144 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • van Breugel, F. & Dickinson, M. H. Plume-tracking behavior of flying Drosophila emerges from a set of distinct sensory-motor reflexes. Curr. Biol. 24, 274–286 (2014).

    PubMed 

    Google Scholar
     

  • Demir, M., Kadakia, N., Anderson, H. D., Clark, D. A. & Emonet, T. Walking Drosophila navigate complex plumes using stochastic decisions biased by the timing of odor encounters. eLife 9, e57524 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vickers, N. J. & Baker, T. C. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Natl Acad. Sci. USA 91, 5756–5760 (1994).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Budick, S. A. & Dickinson, M. H. Free-flight responses of Drosophila melanogaster to attractive odors. J. Exp. Biol. 209, 3001–3017 (2006).

    PubMed 

    Google Scholar
     

  • Suver, M. P. et al. Encoding of wind direction by central neurons in Drosophila. Neuron 102, 828–842 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flügge, C. Geruchliche raumorientierung von Drosophila melanogaster. J. Comp. Physiol. A 20, 463–500 (1934).


    Google Scholar
     

  • Kennedy, J. S. & Marsh, D. Pheromone-regulated anemotaxis in flying moths. Science 184, 999–1001 (1974).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hassenstein, B. & Reichardt, W. Z. Systemtheoretische analyse der zeit-, reihenfolgen-und vorzeichenauswertung bei der bewegungsperzeption des rüsselkäfers chlorophanus. Z. Naturforsch. 11, 513–524 (1956).


    Google Scholar
     

  • Gaudry, Q., Hong, E. J., Kain, J., de Bivort, B. L. & Wilson, R. I. Asymmetric neurotransmitter release enables rapid odour lateralization in Drosophila. Nature 493, 424–428 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Duistermars, B. J., Chow, D. M. & Frye, M. A. Flies require bilateral sensory input to track odor gradients in flight. Curr. Biol. 19, 1301–1307 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, G. I. Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196–212 (1922).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bell, J. S. & Wilson, R. I. Behavior reveals selective summation and max pooling among olfactory processing channels. Neuron 91, 425–438 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeAngelis, B. D., Zavatone-Veth, J. A., Gonzalez-Suarez, A. D. & Clark, D. A. Spatiotemporally precise optogenetic activation of sensory neurons in freely walking Drosophila. eLife 9, e54183 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semmelhack, J. L. & Wang, J. W. Select Drosophila glomeruli mediate innate olfactory attraction and aversion. Nature 459, 218–223 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y., Chen, K., Ye, Y., Zhang, T. & Zhou, W. Humans navigate with stereo olfaction. Proc. Natl Acad. Sci. USA 117, 16065–16071 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhandawat, V., Maimon, G., Dickinson, M. H. & Wilson, R. I. Olfactory modulation of flight in Drosophila is sensitive, selective and rapid. J. Exp. Biol. 213, 3625–3635 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salazar-Gatzimas, E. et al. Direct measurement of correlation responses in Drosophila elementary motion detectors reveals fast timescale tuning. Neuron 92, 227–239 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bours, R. J., Kroes, M. C. & Lankheet, M. J. Sensitivity for reverse-phi motion. Vision Res. 49, 1–9 (2009).

    PubMed 

    Google Scholar
     

  • Tuthill, J. C., Chiappe, M. E. & Reiser, M. B. Neural correlates of illusory motion perception in Drosophila. Proc. Natl Acad. Sci. USA 108, 9685–9690 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orger, M. B., Smear, M. C., Anstis, S. M. & Baier, H. Perception of Fourier and non-Fourier motion by larval zebrafish. Nat. Neurosci. 3, 1128–1133 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Livingstone, M. S., Pack, C. C. & Born, R. T. Two-dimensional substructure of MT receptive fields. Neuron 30, 781–793 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Anstis, S. M. & Rogers, B. J. Illusory reversal of visual depth and movement during changes of contrast. Vision Res. 15, 957–961 (1975).

    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Q. & Victor, J. D. A set of high-order spatiotemporal stimuli that elicit motion and reverse-phi percepts. J. Vis. 10, 9 (2010).

    PubMed 

    Google Scholar
     

  • Clark, D. A. et al. Flies and humans share a motion estimation strategy that exploits natural scene statistics. Nat. Neurosci. 17, 296–303 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeanne, J. M. & Wilson, R. I. Convergence, divergence, and reconvergence in a feedforward network improves neural speed and accuracy. Neuron 88, 1014–1026 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorur-Shandilya, S., Demir, M., Long, J., Clark, D. A. & Emonet, T. Olfactory receptor neurons use gain control and complementary kinetics to encode intermittent odorant stimuli. eLife 6, e27670 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhandawat, V., Olsen, S. R., Gouwens, N. W., Schlief, M. L. & Wilson, R. I. Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations. Nat. Neurosci. 10, 1474–1482 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drix, D. & Schmuker, M. Resolving fast gas transients with metal oxide sensors. ACS Sensors 6, 688–692 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Martinez, D., Burgues, J. & Marco, S. Fast Measurements with MOX Sensors: a least-squares approach to blind deconvolution. Sensors 19, 4029 (2019).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Kowadlo, G. & Russell, R. A. Robot odor localization: a taxonomy and survey. Int. J. Robot. Res. 27, 869–894 (2008).


    Google Scholar
     

  • Burgues, J., Hernandez, V., Lilienthal, A. J. & Marco, S. Smelling nano aerial vehicle for gas source localization and mapping. Sensors 19, 478 (2019).

    ADS 
    PubMed Central 

    Google Scholar
     

  • Boie, S. D. et al. Information-theoretic analysis of realistic odor plumes: What cues are useful for determining location? PLoS Comput. Biol. 14, e1006275 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jayaram, V., Kadakia, N. & Emonet, T. Sensing complementary temporal features of odor signals enhances navigation of diverse turbulent plumes. eLife 11, e72415 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reddy, G., Murthy, V. N. & Vergassola, M. Olfactory sensing and navigation in turbulent environments. Annu. Rev. Conden. Matter Phys. 13, 191–213 (2022).

    ADS 

    Google Scholar
     

  • Sreenivasan, K. R. Turbulent mixing: a perspective. Proc. Natl Acad. Sci. USA 116, 18175–18183 (2019).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jefferis, G. S. et al. Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell 128, 1187–1203 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ackels, T. et al. Fast odour dynamics are encoded in the olfactory system and guide behaviour. Nature 593, 558–563 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martelli, C., Carlson, J. R. & Emonet, T. Intensity invariant dynamics and odor-specific latencies in olfactory receptor neuron response. J. Neurosci. 33, 6285–6297 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shusterman, R., Smear, M. C., Koulakov, A. A. & Rinberg, D. Precise olfactory responses tile the sniff cycle. Nat. Neurosci. 14, 1039–1044 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, I. J. et al. Neurally encoding time for olfactory navigation. PLoS Comput. Biol. 12, e1004682 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagel, K. I., Hong, E. J. & Wilson, R. I. Synaptic and circuit mechanisms promoting broadband transmission of olfactory stimulus dynamics. Nat. Neurosci. 18, 56–65 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Tao, L., Ozarkar, S. & Bhandawat, V. Mechanisms underlying attraction to odors in walking Drosophila. PLoS Comput. Biol. 16, e1007718 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Bruyne, M., Foster, K. & Carlson, J. R. Odor coding in the Drosophila antenna. Neuron 30, 537–552 (2001).

    PubMed 

    Google Scholar
     

  • Gorur-Shandilya, S., Martelli, C., Demir, M. & Emonet, T. Controlling and measuring dynamic odorant stimuli in the laboratory. J. Exp. Biol. 222, jeb207787 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pope, S. B. Simple models of turbulent flows. Phys. Fluids 23, 011301 (2011).

    ADS 
    MATH 

    Google Scholar
     

  • Badwan, B. A., Creamer, M. S., Zavatone-Veth, J. A. & Clark, D. A. Dynamic nonlinearities enable direction opponency in Drosophila elementary motion detectors. Nat. Neurosci. 22, 1318–1326 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldstein, S. On diffusion by discontinuous movements, and on the telegraph equation. Q. J. Mech. Appl. Math. 4, 129–156 (1951).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Balkovsky, E. & Shraiman, B. I. Olfactory search at high Reynolds number. Proc. Natl Acad. Sci. USA 99, 12589–12593 (2002).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Miller, C. J. & Carlson, J. R. Regulation of odor receptor genes in trichoid sensilla of the Drosophila antenna. Genetics 186, 79–95 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link