May 5, 2024
Loophole-free Bell inequality violation with superconducting circuits – Nature

Loophole-free Bell inequality violation with superconducting circuits – Nature

  • Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935).

    Article 
    MATH 

    Google Scholar
     

  • Bell, J. S. On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964).

    Article 
    MathSciNet 

    Google Scholar
     

  • Bell, J. S. in Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy 2nd edn, Ch. 24, 232–248 (Cambridge Univ. Press, 2004).

  • Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Giustina, M. et al. Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 115, 250401 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Shalm, L. K. et al. Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, M.-H. et al. Test of local realism into the past without detection and locality loopholes. Phys. Rev. Lett. 121, 080404 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rosenfeld, W. et al. Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes. Phys. Rev. Lett. 119, 010402 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurpiers, P. et al. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature 558, 264–267 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Walter, T. et al. Rapid, high-fidelity, single-shot dispersive readout of superconducting qubits. Phys. Rev. Appl. 7, 054020 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Magnard, P. et al. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Phys. Rev. Lett. 125, 260502 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scarani, V. Bell Nonlocality (Oxford Univ. Press, 2019).

  • Freedman, S. J. & Clauser, J. F. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938 (1972).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Aspect, A., Grangier, P. & Roger, G. Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91 (1982).

    Article 
    ADS 

    Google Scholar
     

  • Larsson, J.-A. Loopholes in Bell inequality tests of local realism. J. Phys. A: Math. Theor. 47, 424003 (2014).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell’s inequalities using time- varying analyzers. Phys. Rev. Lett. 49, 1804 (1982).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Weihs, G., Jennewein, T., Simon, C., Weinfurter, H. & Zeilinger, A. Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039 (1998).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Rowe, M. A. et al. Experimental violation of a Bell’s inequality with efficient detection. Nature 409, 791–794 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Aspect, A. Closing the door on Einstein and Bohr’s quantum debate. Physics 8, 123 (2015).

    Article 

    Google Scholar
     

  • Acín, A. et al. Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Šupić, I. & Bowles, J. Self-testing of quantum systems: a review. Quantum 4, 337 (2020).

    Article 

    Google Scholar
     

  • Sekatski, P., Bancal, J.-D., Wagner, S. & Sangouard, N. Certifying the building blocks of quantum computers from Bell’s theorem. Phys. Rev. Lett. 121, 180505 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Vazirani, U. & Vidick, T. Fully device-independent quantum key distribution. Phys. Rev. Lett. 113, 140501 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Colbeck, R. Quantum and Relativistic Protocols for Secure Multi-Party Computation. PhD thesis, Univ. Cambridge (2009).

  • Pironio, S. et al. Random numbers certified by Bell’s theorem. Nature 464, 1021–1024 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Colbeck, R. & Renner, R. Free randomness can be amplified. Nat. Phys. 8, 450–453 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kessler, M. & Arnon-Friedman, R. Device-independent randomness amplification and privatization. IEEE J. Selected Areas Inf. Theory 1, 568–584 (2020).

    Article 

    Google Scholar
     

  • Krinner, S. et al. Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 669–674 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Leggett, A. J. Macroscopic quantum systems and the quantum theory of measurement. Progr. Theor. Phys. Suppl. 69, 80–100 (1980).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Martinis, J. M., Devoret, M. H. & Clarke, J. Energy-level quantization in the zero-voltage state of a current-biased Josephson junction. Phys. Rev. Lett. 55, 1543 (1985).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ansmann, M. et al. Violation of Bell’s inequality in Josephson phase qubits. Nature 461, 504–506 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • The BIG Bell Test Collaboration. Challenging local realism with human choices. Nature 557, 212–216 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Zhong, Y. P. et al. Violating Bell’s inequality with remotely connected superconducting qubits. Nat. Phys. 15, 741–744 (2019).

  • Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Horodecki, R., Horodecki, P. & Horodecki, M. Violating Bell inequality by mixed spin-12 states: necessary and sufficient condition. Phys. Lett. A 200, 340 (1995).

    Article 
    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Garg, A. & Mermin, N. D. Detector inefficiencies in the Einstein-Podolsky-Rosen experiment. Phys. Rev. D 35, 3831 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Eberhard, P. H. Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. Phys. Rev. A 47, R747 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Magnard, P. Meter-Scale Microwave Quantum Networks for Superconducting Circuits. PhD thesis, ETH Zurich (2021).

  • Axline, C. et al. On-demand quantum state transfer and entanglement between remote microwave cavity memories. Nat. Phys. 14, 705–710 (2018).

  • Campagne-Ibarcq, P. et al. Deterministic remote entanglement of superconducting circuits through microwave two-photon transitions. Phys. Rev. Lett. 120, 200501 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurpiers, P., Walter, T., Magnard, P., Salathe, Y. & Wallraff, A. Characterizing the attenuation of coaxial and rectangular microwave-frequency waveguides at cryogenic temperatures. EPJ Quant. Technol. 4, 8 (2017).

    Article 

    Google Scholar
     

  • D’Addabbo, A. et al. The CUORE cryostat. J. Low Temp. Phys. 193, 867–875 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Pechal, M. et al. Microwave-controlled generation of shaped single photons in circuit quantum electrodynamics. Phys. Rev. X 4, 041010 (2014).


    Google Scholar
     

  • Abellán, C., Amaya, W., Mitrani, D., Pruneri, V. & Mitchell, M. W. Generation of fresh and pure random numbers for loophole-free Bell tests. Phys. Rev. Lett. 115, 250403 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Burkhart, L. D. et al. Error-detected state transfer and entanglement in a superconducting quantum network. PRX Quantum 2, 030321 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Barrett, J., Hardy, L. & Kent, A. No signalling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Peñas, G. F., Puebla, R., Ramos, T., Rabl, P. & García-Ripoll, J. J. Universal deterministic quantum operations in microwave quantum links. Phys. Rev. Applied 17, 054038 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kjaergaard, M. et al. Superconducting qubits: current state of play. Ann. Rev. Condens. Matter Phys. 11, 369–395 (2020).

  • Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    Article 
    ADS 

    Google Scholar
     

  • DiCarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Blais, A., Grimsmo, A. L., Girvin, S. M. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Scheidl, T. et al. Violation of local realism with freedom of choice. Proc. Natl Acad. Sci. USA 107, 19708 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhang, Y., Glancy, S. & Knill, E. Asymptotically optimal data analysis for rejecting local realism. Phys. Rev. A 84, 062118 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Source link