May 28, 2024

Measuring phonon dispersion at an interface – Nature

  • 1.

    Masri, P. Surface and interface phonons and related topics. Surf. Sci. Rep. 9, 293–369 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Giri, A. & Hopkins, P. E. A review of experimental and computational advances in thermal boundary conductance and nanoscale thermal transport across solid interfaces. Adv. Funct. Mater. 30, 1903857 (2020).

    CAS 

    Google Scholar
     

  • 3.

    Djafari-Rouhani, B., Masri, P. & Dobrzynski, L. Vibrational properties of a bicrystal interface: different-interface phonons and the low-temperature specific heat. Phys. Rev. B 15, 5690–5711 (1977).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Masri, P. Interface phonons: effects of crystal size. J. Phys. C 14, 2265–2278 (1981).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Tamine, M., Boumrar, H. & Rafil, O. Interface and step localized phonon modes between two truncated thin films. Surf. Rev. Lett. 11, 155–165 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Girvin, S. & Yang, K. Modern Condensed Matter Physics (Cambridge Univ. Press, 2019).

  • 7.

    Gordiz, K. & Henry, A. Phonon transport at interfaces: determining the correct modes of vibration. J. Appl. Phys. 119, 015101 (2016).

    ADS 

    Google Scholar
     

  • 8.

    Luh, D. A., Miller, T., Paggel, J. J. & Chiang, T. C. Large electron–phonon coupling at an interface. Phys. Rev. Lett. 88, 256802 (2002).

    ADS 
    PubMed 

    Google Scholar
     

  • 9.

    Cahill, D. G. et al. Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Chu, C. W. et al. Interface-induced and interface-enhanced superconductivity. J. Supercond. Nov. Magn. 32, 7–15 (2018).


    Google Scholar
     

  • 11.

    Wang, Q.-Y. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin. Phys. Lett. 29, 037402 (2012).

    ADS 

    Google Scholar
     

  • 12.

    Gordiz, K. & Henry, A. Phonon transport at crystalline Si/Ge interfaces: the role of interfacial modes of vibration. Sci. Rep. 6, 23139 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Burkel, E. Phonon spectroscopy by inelastic X-ray scattering. Rep. Prog. Phys. 63, 171–232 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 14.

    Lee, J., Crampton, K. T., Tallarida, N. & Apkarian, V. A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568, 78–82 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Chen, X. et al. Modern scattering-type scanning near-field optical microscopy for advanced material research. Adv. Mater. 31, 1804774 (2019).


    Google Scholar
     

  • 16.

    Szeftel, J. Surface phonon dispersion, using electron energy loss spectroscopy. Surf. Sci. 152/153, 797–810 (1985).

    ADS 

    Google Scholar
     

  • 17.

    Krivanek, O. L. et al. Vibrational spectroscopy in the electron microscope. Nature 514, 209–212 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Egerton, R. F. Electron Energy-loss Spectroscopy in the Electron Microscope 3rd edn (Springer, 2011).

  • 19.

    Hage, F. S. et al. Nanoscale momentum-resolved vibrational spectroscopy. Sci. Adv. 4, eaar7495 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Lagos, M. J., Trugler, A., Hohenester, U. & Batson, P. E. Mapping vibrational surface and bulk modes in a single nanocube. Nature 543, 529–532 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Qi, R. et al. Four-dimensional vibrational spectroscopy for nanoscale mapping of phonon dispersion in BN nanotubes. Nat. Commun. 12, 1179 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Li, N. et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater. 20, 43–48 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Govyadinov, A. A. et al. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nat. Commun. 8, 95 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Venkatraman, K., Levin, B. D. A., March, K., Rez, P. & Crozier, P. A. Vibrational spectroscopy at atomic resolution with electron impact scattering. Nat. Phys. 15, 1237–1241 (2019).

    CAS 

    Google Scholar
     

  • 25.

    Hage, F. S., Radtke, G., Kepaptsoglou, D. M., Lazzeri, M. & Ramasse, Q. M. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 367, 1124–1127 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Yan, X. et al. Single-defect phonons imaged by electron microscopy. Nature 589, 65–69 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Senga, R. et al. Position and momentum mapping of vibrations in graphene nanostructures. Nature 573, 247–250 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Dwyer, C. et al. Electron-beam mapping of vibrational modes with nanometer spatial resolution. Phys. Rev. Lett. 117, 256101 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Hachtel, J. A. et al. Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope. Science 363, 525–528 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon spectroscopy at atomic resolution. Phys. Rev. Lett. 122, 016103 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Plotkin-Swing, B. et al. Hybrid pixel direct detector for electron energy loss spectroscopy. Ultramicroscopy 217, 113067 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Nicholls, R. J. et al. Theory of momentum-resolved phonon spectroscopy in the electron microscope. Phys. Rev. B 99, 094105 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Fritsch, J., Pavone, P. & Schröder, U. Ab initio calculation of the phonon dispersion in bulk InP and in the InP(110) surface. Phys. Rev. B 52, 11326–11334 (1995).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Benedek, G. et al. Theory of surface phonons at metal surfaces: recent advances. J. Phys. Condens. Matter 22, 084020 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Little, W. A. The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37, 334–349 (1959).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Swartz, E. T. & Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989).

    ADS 

    Google Scholar
     

  • 37.

    Mingo, N. & Yang, L. Phonon transport in nanowires coated with an amorphous material: an atomistic Green’s function approach. Phys. Rev. B 68, 245406 (2003).

    ADS 

    Google Scholar
     

  • 38.

    Gordiz, K. & Henry, A. A formalism for calculating the modal contributions to thermal interface conductance. New J. Phys. 17, 103002 (2015).

    ADS 

    Google Scholar
     

  • 39.

    Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Chen, C. et al. Misfit accommodation mechanism at the heterointerface between diamond and cubic boron nitride. Nat. Commun. 6, 6327 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • 42.

    Li, J. et al. Computation and data driven discovery of topological phononic materials. Nat. Commun. 12, 1204 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Liu, Y., Xu, Y., Zhang, S.-C. & Duan, W. Model for topological phononics and phonon diode. Phys. Rev. B 96, 064106 (2017).

    ADS 

    Google Scholar
     

  • 44.

    T. Taniguchi, & S. Yamaoka. Heteroepitaxial growth of cubic boron nitride single crystal on diamond seed under high pressure. Mater. Res. Soc. Symp. Proc. 472, 379–383 (1997).

    CAS 

    Google Scholar
     

  • 45.

    Chen, K. et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 367, 555–559 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Wei, L., Kuo, P. K., Thomas, R. L., Anthony, T. R. & Banholzer, W. F. Thermal conductivity of isotopically modified single crystal diamond. Phys. Rev. Lett. 70, 3764–3767 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Huang, X. & Guo, Z. High thermal conductance across c-BN/diamond interface. Diam. Relat. Mater. 108, 107979 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Zhou, J. et al. Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 570, 500–503 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Dabov, K., Foi, A., Katkovnik, V. & Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007).

    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • 50.

    Batson, P. E. & Lagos, M. J. Interpretation of meV resolution phonon EELS data. Microsc. Microanal. 24, 412–413 (2018).

    ADS 

    Google Scholar
     

  • 51.

    Williams, D. B. & Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science Vol. 2 (Springer Science & Business Media, 2008).

  • 52.

    Giannozzi, P. et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    PubMed 

    Google Scholar
     

  • 53.

    Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).

    ADS 
    CAS 

    Google Scholar
     

  • 55.

    Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • 56.

    Vila, F. D., Rehr, J. J., Rossner, H. H. & Krappe, H. J. Theoretical X-ray absorption Debye–Waller factors. Phys. Rev. B 76, 014301 (2007).

    ADS 

    Google Scholar
     

  • 57.

    Waasmaier, D. & Kirfel, A. New analytical scattering-factor functions for free atoms and ions. Acta Crystallogr. A 51, 416–431 (1995).


    Google Scholar
     

  • 58.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 59.

    Kınacı, A., Haskins, J. B., Sevik, C. & Çağın, T. Thermal conductivity of BN-C nanostructures. Phys. Rev. B 86, 115410 (2012).

    ADS 

    Google Scholar
     

  • 60.

    Seyf, H. R., Gordiz, K., DeAngelis, F. & Henry, A. Using Green–Kubo modal analysis (GKMA) and interface conductance modal analysis (ICMA) to study phonon transport with molecular dynamics. J. Appl. Phys. 125, 081101 (2019).

    ADS 

    Google Scholar
     

  • 61.

    Togo, A., Chaput, L. & Tanaka, I. Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B 91, 094306 (2015).

    ADS 

    Google Scholar
     

  • Source link