May 7, 2024

Widespread changes in surface temperature persistence under climate change – Nature

  • 1.

    Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2013).

  • 2.

    Kirtman, B. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 11 (IPCC, Cambridge Univ. Press, 2013).

  • 3.

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 12 (IPCC, Cambridge Univ. Press, 2013).

  • 4.

    Schar, C. et al. The role of increasing temperature variability in European summer heatwaves. Nature 427, 332–336 (2004).

    ADS 
    PubMed 

    Google Scholar
     

  • 5.

    Seneviratne, S. I., Luthi, D., Litschi, M. & Schar, C. Land–atmosphere coupling and climate change in Europe. Nature 443, 205–207 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Fischer, E. M. & Schar, C. Future changes in daily summer temperature variability: driving processes and role for temperature extremes. Clim. Dyn. 33, 917–935 (2009).


    Google Scholar
     

  • 7.

    Donat, M. G. & Alexander, L. V. The shifting probability distribution of global daytime and night-time temperatures. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052459 (2012).

    Article 

    Google Scholar
     

  • 8.

    Fischer, E. M., J. Rajczak, & Schar, C. Changes in European summer temperature variability revisited. Geophys. Res. Lett. 39, 19 (2012).


    Google Scholar
     

  • 9.

    Volodin, E. M. & Yurova, A. Y. Summer temperature standard deviation, skewness and strong positive temperature anomalies in the present day climate and under global warming conditions. Clim. Dyn. 40, 1387–1398 (2013).


    Google Scholar
     

  • 10.

    Lewis, S. C. & Karoly, D. J. Anthropogenic contributions to Australia’s record summer temperatures of 2013. Geophys. Res. Lett. 40, 3705–3709 (2013).

    ADS 

    Google Scholar
     

  • 11.

    Screen, J. A. Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Clim. Change 4, 577–582 (2014).

    ADS 

    Google Scholar
     

  • 12.

    Schneider, T., Bischoff, T. & Plotka, H. Physics of changes in synoptic midlatitude temperature variability. J. Climate 28, 2312–2331 (2015).

    ADS 

    Google Scholar
     

  • 13.

    McKinnon, K. A., Rhines, A., Tingley, M. P. & Huybers,, P. The changing shape of Northern hemisphere summer temperature distributions. J. Geophys. Res. Atm. 121, 8849–8868 (2016).

    ADS 

    Google Scholar
     

  • 14.

    Tamarin-Brodsky, T., Hodges, K., Hoskins, B. J. & Shepherd, T. G. A dynamical perspective on atmospheric temperature variability and its response to climate change. J. Climate 32, 1707–1724 (2019).

    ADS 

    Google Scholar
     

  • 15.

    Tamarin-Brodsky, T., Hodges, K. I., Hoskins, B. J. & Shepherd, T. Changes in Northern Hemisphere temperature variability shaped by regional warming patterns. Nat. Geosci. 13, 414–421 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Boulton, C. A. & Lenton, T. M. Slowing down of North Pacific climate variability and its implications for abrupt ecosystem change. Proc. Natl Acad. Sci. USA 112, 11496–11501 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Lenton, T. M., Dakos, V., Bathiany, S. & Scheffer, M. Observed trends in the magnitude and persistence of monthly temperature variability. Sci. Rep. 7, 5940 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Pfleiderer, P. & Coumou, D. Quantification of temperature persistence over the Northern Hemisphere land-area. Clim. Dyn. 51, 627–637 (2018).


    Google Scholar
     

  • 19.

    Di Cecco, G. J., Gouhier, T. C. Increased spatial and temporal autocorrelation of temperature under climate change. Sci. Rep. 8, 14850 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Pfleiderer, P., Schleussner, C., Kornhuber, K. & Coumou, D. Summer weather becomes more persistent in a 2 C world. Nat. Clim. Change 9, 666–671 (2019).

    ADS 

    Google Scholar
     

  • 21.

    Fischer, E. M., Beyerle, U., Schleussner, C. F., King, A. D. & Knutti, R. Biased estimates of changes in climate extremes from prescribed SST simulations. Geophys. Res. Lett. 45, 8500–8509 (2018).

    ADS 

    Google Scholar
     

  • 22.

    Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Barnes, E. A. & Screen, J. The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? WIREs Clim. Change 6, 277–286 (2015).

    Article 

    Google Scholar
     

  • 24.

    Graham, R. M. et al. Increasing frequency and duration of Arctic winter warming events. Geophys. Res. Lett. 44, 6974–6983 (2013).

    ADS 

    Google Scholar
     

  • 25.

    Tan, Z., Lachmy, O. & Shaw, T. A. The sensitivity of the jet stream response to climate change to radiative assumptions. JAMES 11, 934–956 (2019).

    ADS 

    Google Scholar
     

  • 26.

    Hall, A. & Manabe, S. The role of water vapor feedback in unperturbed climate variability and global warming. J. Climate 12, 2327–2346 (1999).

    ADS 

    Google Scholar
     

  • 27.

    Drotos, G., Becker, T., Mauritsen, T. & Stevens, B. Global variability in radiative-convective equilibrium with a slab ocean under a wide range of co2 concentrations. Tellus 72, 1–19 (2020).


    Google Scholar
     

  • 28.

    Barnes, E. A. & Hartmann, D. L. Testing a theory for the effect of latitude on the persistence of eddy-driven jets using CMIP3 simulations, Geophys. Res. Lett. 37, L15801 (2010).

    ADS 

    Google Scholar
     

  • 29.

    Woollings, T. et al. Blocking and its response to climate change. Curr. Clim. Change Rep. 4, 287–300 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Barnes, E. A. & Polvani, L. Response of the midlatitude jets and of their variability to increased greenhouse gases in the CMIP5 models. J. Climate 26, 7117–7135 (2013).

    ADS 

    Google Scholar
     

  • 31.

    Yulaeva, E. & Wallace, J. M. The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J. Climate 7, 1719–1736 (1994).

    ADS 

    Google Scholar
     

  • 32.

    Alexander, M. A. et al. The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J. Climate 15, 2205–2231 (2002).

    ADS 

    Google Scholar
     

  • 33.

    Cai, W. et al. Increasing frequency of extreme El Nino events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    ADS 

    Google Scholar
     

  • 34.

    Kohyama, T., Hartmann, D. L. & Battisti, D. S. La Nina-like mean-state response to global warming and potential oceanic roles. J. Climate 30, 4207–4225 (2017).

    ADS 

    Google Scholar
     

  • 35.

    Frankignoul, C. & Hasselman, K. Stochastic climate models, Part II Application to sea-surface temperature variability and thermocline variability. Tellus 29, 289–305 (1977).

    ADS 

    Google Scholar
     

  • 36.

    Deser, C., Alexander, M. A. & Timlin, M. S. Understanding the persistence of sea surface temperature anomalies in midlatitudes. J. Climate 16, 57–72 (2003).

    ADS 

    Google Scholar
     

  • 37.

    Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N. & Scott, J. D. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res. 117, C04031 (2012).

    ADS 

    Google Scholar
     

  • 38.

    Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Change 10, 1116–1123 (2020).

    ADS 

    Google Scholar
     

  • 39.

    Amaya, D. J. et al. Are long-term changes in mixed layer depth influencing North Pacific marine heatwaves? Bull. Am. Meteorol. Soc. 102, S59–S66 (2021).


    Google Scholar
     

  • 40.

    Sallée, J. B. et al. Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: historical bias and forcing response. J. Geophys. Res. Oceans 118, 1830–1844 (2013).

    ADS 

    Google Scholar
     

  • 41.

    Manabe, S., Stouffer, R. J., Spelman, M. J. & Bryan, K. Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part I. Annual mean response. J. Climate 4, 785–818 (1991).

    ADS 

    Google Scholar
     

  • 42.

    de Lavergne, C. et al. Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Clim. Change 4, 278–282 (2014).


    Google Scholar
     

  • 43.

    Kostov, Y. et al. Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models. Climate Dyn. 48, 1595–1609 (2017).

    ADS 

    Google Scholar
     

  • 44.

    Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Jia, G. et al. in IPCC Special Report on Climate Change and Land (eds Shukla, P. R. et al.) Ch. 2 (IPCC, 2019).

  • 46.

    Frankignoul, C., Czaja, A. & L’Heveder, B. Air–sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Climate 11, 2310–2324 (1998).

    ADS 

    Google Scholar
     

  • 47.

    Hausmann, U., Czaja, A. & Marshall, J. Mechanisms controlling the sst air–sea heat flux feedback and its dependence on spatial scale. Clim. Dyn. 48, 1297–1307 (2016).


    Google Scholar
     

  • 48.

    Vargas Zeppetello, L. R., Donohoe, A. & Battisti, D. S. Does surface temperature respond to or determine downwelling longwave radiation? Geophys. Res. Lett. 46, 2781–2789 (2019).

    ADS 

    Google Scholar
     

  • 49.

    Barsugli, J. J. and D. S. Battisti, The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J. Atmos. Sci. 55, 477–493 (1998).

    ADS 

    Google Scholar
     

  • 50.

    Cronin, T. W. & Emanuel, K. A. The climate time scale in the approach to radiative-convective equilibrium. JAMES 5, 843–849 (2013).

    ADS 

    Google Scholar
     

  • 51.

    Kay, J. E. et al. The Community Earth System Model (CESM) Large Ensemble Project: a community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc. 96, 1333–1349 (2015).

    ADS 

    Google Scholar
     

  • 52.

    Jeffrey, S. et al. Australia’s CMIP5 submission using the CSIRO-Mk3.6 model. Aust. Meteorol. Ocean 63, 1–13 (2013).


    Google Scholar
     

  • 53.

    Kirchmeier-Young, M., Zwiers, F. W. & Gillett, N. P. Attribution of extreme events in arctic sea ice extent. J. Climate 30, 553–571 (2017).

    ADS 

    Google Scholar
     

  • 54.

    Rodgers, K. B., Lin, J. & Frolicher, T. L. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences 12, 3301–3320 (2015).

    ADS 

    Google Scholar
     

  • 55.

    Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).

    ADS 

    Google Scholar
     

  • 56.

    Phillips, A. S., Deser, C., Fasullo, J., Schneider, D. P. & Simpson, I. R. Assessing climate variability and change in model large ensembles: a user’s guide to the “climate variability diagnostics package for large ensembles” version 1.0 (2020).


    Google Scholar
     

  • 57.

    Fraedrich, K. and Blender, R. Scaling of atmosphere and ocean temperature correlations in observations and climate models. Phys. Rev. Lett. 90, 108501 (2003).

    ADS 

    Google Scholar
     

  • 58.

    Franzke, C. L. E. et al. The structure of climate variability across scales. Rev. Geophys. 58, e2019RG000657 (2020).

    ADS 

    Google Scholar
     

  • 59.

    Wilks, D. S. “The stippling shows statistically significant grid points”: how research results are routinely overstated and overinterpreted, and what to do about it. Bull. Amer. Meteor. Soc. 97, 2263–2273 (2016).

    ADS 

    Google Scholar
     

  • 60.

    Frierson, D. M. W., Held, I. M. & Zurita-Gotor, P. A gray-radiation aquaplanet moist gcm. Part I: static stability and eddy scale. J. Atmos. Sci. 63, 2548–2566 (2006).

    ADS 

    Google Scholar
     

  • 61.

    Iacono, M. J., Mlawer, E. J., Clough, S. A. & Morcrette, J.-J. Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res. 105, 14873–14890 (2000).

    ADS 

    Google Scholar
     

  • 62.

    Delworth, T. L., Broccoli, A. J., Stouffer, R. J., Balaji, V. & Beesley, J. A. GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate 19, 643–667 (2006).

    ADS 

    Google Scholar
     

  • 63.

    Kang, S. M., Held, I. M., Frierson, D. M. W. & Zhao, M. The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM. J. Climate 21, 3521–3532 (2008).

    ADS 

    Google Scholar
     

  • 64.

    Mauritsen, T. et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. JAMES 11, 998–1038 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • Source link