May 28, 2024

Observation of Stark many-body localization without disorder – Nature

  • 1.

    Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854–858 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Abanin, D. A., Altman, E., Bloch, I. & Serbyn, M. Colloquium: many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 3.

    Nandkishore, R. & Huse, D. A. Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15–38 (2015).

    ADS 

    Google Scholar
     

  • 4.

    Van Nieuwenburg, E., Baum, Y. & Refael, G. From Bloch oscillations to many-body localization in clean interacting systems. Proc. Natl Acad. Sci. USA 116, 9269–9274 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Schulz, M., Hooley, C. A., Moessner, R. & Pollmann, F. Stark many-body localization. Phys. Rev. Lett. 122, 040606 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Lee, P. A. Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Gornyi, I. V., Mirlin, A. D. & Polyakov, D. G. Interacting electrons in disordered wires: Anderson localization and low-T transport. Phys. Rev. Lett. 95, 206603 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Basko, D. M., Aleiner, I. L. & Altshuler, B. L. Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126–1205 (2006).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 10.

    Serbyn, M., Papic’, Z. & Abanin, D. A. Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 111, 127201 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Huse, D. A., Nandkishore, R. & Oganesyan, V. Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202 (2014).

    ADS 

    Google Scholar
     

  • 12.

    Iyer, S., Oganesyan, V., Refael, G. & Huse, D. A. Many-body localization in a quasiperiodic system. Phys. Rev. B 87, 134202 (2013).

    ADS 

    Google Scholar
     

  • 13.

    Brenes, M., Dalmonte, M., Heyl, M. & Scardicchio, A. Many-body localization dynamics from gauge invariance. Phys. Rev. Lett. 120, 030601 (2018).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Grover, T. & Fisher, M. P. A. Quantum disentangled liquids. J. Stat. Mech: Theory Exp. 2014, P10010 (2014).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 15.

    Yao, N. Y., Laumann, C. R., Cirac, J. I., Lukin, M. D. & Moore, J. E. Quasi-many-body localization in translation-invariant systems. Phys. Rev. Lett. 117, 240601 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Alet, F. & Laflorencie, N. Many-body localization: an introduction and selected topics. C. R. Phys. 19, 498–525 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Wannier, G. H. Dynamics of band electrons in electric and magnetic fields. Rev. Mod. Phys. 34, 645–655 (1962).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 18.

    Taylor, S. R., Schulz, M., Pollmann, F. & Moessner, R. Experimental probes of Stark many-body localization. Phys. Rev. B 102, 054206 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Kshetrimayum, A., Eisert, J. & Kennes, D. M. Stark time crystals: symmetry breaking in space and time. Phys. Rev. B 102, 195116 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Zhang, L., Ke, Y., Liu, W. & Lee, C. Mobility edge of Stark many-body localization. Phys. Rev. A 103, 023323 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Chanda, T., Yao, R. & Zakrzewski, J. Coexistence of localized and extended phases: many-body localization in a harmonic trap. Phys. Rev. Res. 2, 032039 (2020).

    CAS 

    Google Scholar
     

  • 22.

    Singh Bhakuni, D. & Sharma, A. Stability of electric field driven many-body localization in an interacting long-range hopping model. Phys. Rev. B 102, 085133 (2020).

    ADS 

    Google Scholar
     

  • 23.

    Doggen, E. V. H., Gornyi, I. V. & Polyakov, D. G. Stark many-body localization: evidence for Hilbert-space shattering. Phys. Rev. B 103, L100202 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Khemani, V., Hermele, M. & Nandkishore, R. Localization from Hilbert space shattering: from theory to physical realizations. Phys. Rev. B 101, 174204 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Yao, R., Chanda, T. & Zakrzewski, J. Nonergodic dynamics in disorder-free potentials. Ann. Phys. https://doi.org/10.1016/j.aop.2021.168540 (in the press).

  • 26.

    Guardado-Sanchez, E. et al. Subdiffusion and heat transport in a tilted two-dimensional Fermi-Hubbard system. Phys. Rev. 10, 011042 (2020).

    CAS 

    Google Scholar
     

  • 27.

    Scherg, S. et al. Observing non-ergodicity due to kinetic constraints in tilted Fermi-Hubbard chains. Nat. Commun. 12, 4490 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Guo, Q. et al. Stark many-body localization on a superconducting quantum processor. Preprint at https://arxiv.org/abs/2011.13895 (2020).

  • 29.

    Sala, P., Rakovszky, T., Verresen, R., Knap, M. & Pollmann, F. Ergodicity breaking arising from hilbert space fragmentation in dipole-conserving Hamiltonians. Phys. Rev. 10, 011047 (2020).

    CAS 

    Google Scholar
     

  • 30.

    Smith, J. et al. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907–911 (2016).

    CAS 

    Google Scholar
     

  • 31.

    Xu, K. et al. Emulating many-body localization with a superconducting quantum processor. Phys. Rev. Lett. 120, 050507 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Chiaro, B. et al. Direct measurement of non-local interactions in the many-body localized phase. Preprint at https://arxiv.org/abs/1910.06024 (2019).

  • 33.

    Brydges, T. et al. Probing Rényi entanglement entropy via randomized measurements. Science 364, 260–263 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999).

    ADS 

    Google Scholar
     

  • 35.

    Lee, A. C. et al. Engineering large Stark shifts for control of individual clock state qubits. Phys. Rev. A 94, 042308 (2016).

    ADS 

    Google Scholar
     

  • 36.

    Oganesyan, V. & Huse, D. A. Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111 (2007).

    ADS 

    Google Scholar
     

  • 37.

    Schreiber, M. et al. Observation of many-body localization of interacting fermions in a quasi-random optical lattice. Science 349, 842–845 (2015).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • 38.

    Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Tan, W. L. et al. Domain-wall confinement and dynamics in a quantum simulator. Nat. Phys. 17, 742–747 (2021).

    CAS 

    Google Scholar
     

  • 40.

    Gromov, A., Lucas, A. & Nandkishore, R. M. Fracton hydrodynamics. Phys. Rev. Res. 2, 033124 (2020).

    CAS 

    Google Scholar
     

  • 41.

    Wu, Y.-L. & Das Sarma, S. Understanding analog quantum simulation dynamics in coupled ion-trap qubits. Phys. Rev. A 93, 022332 (2016).

    ADS 

    Google Scholar
     

  • 42.

    Pino, M. Entanglement growth in many-body localized systems with long-range interactions. Phys. Rev. B 90, 174204 (2014).

    ADS 

    Google Scholar
     

  • 43.

    Safavi-Naini, A., Wall, M. L., Acevedo, O. L., Rey, A. M. & Nandkishore, R. M. Quantum dynamics of disordered spin chains with power-law interactions. Phys. Rev. A 99, 033610 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Lukin, A. et al. Probing entanglement in a many-body-localized system. Science 364, 256–260 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Serbyn, M. et al. Interferometric probes of many-body localization. Phys. Rev. Lett. 113, 147204 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    De Roeck, W. & Huveneers, F. Stability and instability towards delocalization in many-body localization systems. Phys. Rev. B 95, 155129 (2017).

    ADS 

    Google Scholar
     

  • 47.

    Léonard, J. et al. Signatures of bath-induced quantum avalanches in a many-body–localized system. Preprint at https://arxiv.org/abs/2012.15270 (2020).

  • 48.

    Kondov, S. S., McGehee, W. R., Xu, W. & DeMarco, B. Disorder-induced localization in a strongly correlated atomic Hubbard gas. Phys. Rev. Lett. 114, 083002 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Agarwal, K. et al. Rare-region effects and dynamics near the many-body localization transition. Ann. Phys. 529, 1600326 (2017).

    MathSciNet 

    Google Scholar
     

  • 50.

    Moudgalya, S., Prem, A., Nandkishore, R., Regnault, N. & Bernevig, B. A. Thermalization and its absence within Krylov subspaces of a constrained Hamiltonian in Memorial Volume for Shoucheng Zhang (eds Lian, B. et al.) 147–209 (World Scientific, 2021); https://doi.org/10.1142/9789811231711_0009.

  • 51.

    Else, D. V., Monroe, C., Nayak, C. & Yao, N. Y. Discrete time crystals. Annu. Rev. Condens. Matter Phys. 11, 467–499 (2020).


    Google Scholar
     

  • 52.

    Islam, R. et al. Onset of a quantum phase transition with a trapped ion quantum simulator. Nat. Commun. 2, 377 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601–604 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 56.

    Wei, X., Cheng, C., Xianlong, G. & Mondaini, R. Investigating many-body mobility edges in isolated quantum systems. Phys. Rev. B 99, 165137 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 57.

    Guo, Q. et al. Observation of energy-resolved many-body localization. Nat. Phys. 17, 234–239 (2021).

    CAS 

    Google Scholar
     

  • 58.

    Luitz, D. J. & Bar Lev, Y. The ergodic side of the many-body localization transition. Ann. Phys. 529, 1600350 (2017).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 59.

    Nauts, A. & Wyatt, R. E. New approach to many-state quantum dynamics: the recursive-residue-generation method. Phys. Rev. Lett. 51, 2238–2241 (1983).

    ADS 
    CAS 

    Google Scholar
     

  • 60.

    Titum, P., Iosue, J. T., Garrison, J. R., Gorshkov, A. V. & Gong, Z.-X. Probing ground-state phase transitions through quench dynamics. Phys. Rev. Lett. 123, 115701 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 61.

    Lanyon, B. P. et al. Universal digital quantum simulation with trapped ions. Science 334, 57–61 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 62.

    Zhu, D. et al. Probing many-body localization on a noisy quantum computer. Phys. Rev. A 103, 032606 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • 63.

    Ponte, P., Papic’, Z., Huveneers, F. & Abanin, D. A. Many-body localization in periodically driven systems. Phys. Rev. Lett. 114, 140401 (2015).

    ADS 

    Google Scholar
     

  • 64.

    Richerme, P. et al. Non-local propagation of correlations in quantum systems with long-range interactions. Nature 511, 198–201 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 65.

    Schrieffer, J. R. & Wolff, P. A. Relation between the Anderson and Kondo Hamiltonians. Phys. Rev. 149, 491–492 (1966).

    ADS 
    CAS 

    Google Scholar
     

  • 66.

    Yang, Z. C., Liu, F., Gorshkov, A. V. & Iadecola, T. Hilbert-space fragmentation from strict confinement. Phys. Rev. Lett. 124, 207602 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Atas, Y. Y., Bogomolny, E., Giraud, O. & Roux, G. Distribution of the ratio of consecutive level spacings in random matrix ensembles. Phys. Rev. Lett. 110, 084101 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Neyenhuis, B. et al. Observation of prethermalization in long-range interacting spin chains. Sci. Adv. 3, e1700672 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Li, W.-H., Deng, X. & Santos, L. Hilbert space shattering and disorder-free localization in polar lattice gases. Preprint at https://arxiv.org/abs/2103.13780 (2021).

  • 70.

    Hyllus, P. et al. Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012).

    ADS 

    Google Scholar
     

  • Source link