May 8, 2024

Mechanical computing – Nature

  • 1.

    Freeth, T. et al. Decoding the ancient Greek astronomical calculator known as the Antikythera mechanism. Nature 444, 587–591 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 2.

    Bromley, A. G. Charles Babbage’s analytical engine, 1838. Ann. Hist. Comput. 20, 29–45 (1998).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 3.

    Bush, V. The differential analyzer. A new machine for solving differential equations. J. Franklin Inst. 212, 447–488 (1931).

    MATH 
    Article 

    Google Scholar
     

  • 4.

    Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 575, 607–617 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 5.

    Adleman, L. M. Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 6.

    McEvoy, M. A. & Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 7.

    Hauser, H., Ijspeert, A. J., Füchslin, R. M., Pfeifer, R. & Maass, W. Towards a theoretical foundation for morphological computation with compliant bodies. Biol. Cybern. 105, 355–370 (2011).

    MathSciNet 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar
     

  • 8.

    Müller, V. C. & Hoffmann, M. What is morphological computation? On how the body contributes to cognition and control. Artif. Life 23, 1–24 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 9.

    Laschi, C. & Mazzolai, B. Lessons from animals and plants: the symbiosis of morphological computation and soft robotics. IEEE Robot. Autom. Mag. 23, 107–114 (2016).

    Article 

    Google Scholar
     

  • 10.

    Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nat. Photon. 4, 261–263 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Miller, D. A. Are optical transistors the logical next step? Nat. Photon. 4, 3–5 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Ospelkaus, C. et al. Microwave quantum logic gates for trapped ions. Nature 476, 181–184 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 13.

    Lekitsch, B. et al. Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3, e1601540 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 14.

    Katsikis, G., Cybulski, J. S. & Prakash, M. Synchronous universal droplet logic and control. Nat. Phys. 11, 588–596 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Weaver, J. A., Melin, J., Stark, D., Quake, S. R. & Horowitz, M. A. Static control logic for microfluidic devices using pressure-gain valves. Nat. Phys. 6, 218–223 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Mosadegh, B., Bersano-Begey, T., Park, J. Y., Burns, M. A. & Takayama, S. Next-generation integrated microfluidic circuits. Lab Chip 11, 2813–2818 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 17.

    Woodhouse, F. G. & Dunkel, J. Active matter logic for autonomous microfluidics. Nat. Commun. 8, 15169 (2017).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 18.

    Preston, D. J. et al. Digital logic for soft devices. Proc. Natl Acad. Sci. USA 116, 7750–7759 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 19.

    Volkov, A. G., Adesina, T., Markin, V. S. & Jovanov, E. Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol. 146, 323–324 (2008).

    Article 
    CAS 

    Google Scholar
     

  • 20.

    Yang, R., Lenaghan, S. C., Zhang, M. & Xia, L. A mathematical model on the closing and opening mechanism for venus flytrap. Plant Signal. Behav. 5, 968–978 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 21.

    Jiang, Y., Korpas, L. M. & Raney, J. R. Bifurcation-based embodied logic and autonomous actuation. Nat. Commun. 10, 128 (2019). Demonstrates environmentally responsive mechanical logic by using bistable beam mechanisms and stimuli-responsive materials.

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 22.

    Horsman, C., Stepney, S., Wagner, R. C. & Kendon, V. When does a physical system compute? Proc. Royal Soc. Lond. A 470, 20140182 (2014). Provides a framework for unconventional computing, distinguishing abstract computation from physical embodiment.

    ADS 
    MATH 

    Google Scholar
     

  • 23.

    Feynman, R. P. Feynman Lectures on Computation (CRC Press, 2018).

  • 24.

    MacLennan, B. J. Natural computation and non-Turing models of computation. Theor. Comput. Sci. 317, 115–145 (2004).

    MathSciNet 
    MATH 
    Article 

    Google Scholar
     

  • 25.

    Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar
     

  • 26.

    Mohammadi Estakhri, N., Edwards, B. & Engheta, N. Inverse-designed metastructures that solve equations. Science 363, 1333–1338 (2019).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar
     

  • 27.

    Zangeneh-Nejad, F. & Fleury, R. Topological analog signal processing. Nat. Commun. 10, 2058 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 28.

    Howell, L. L. Compliant Mechanisms (John Wiley & Sons, 2001).

  • 29.

    Qiu, J., Lang, J. H. & Slocum, A. H. A curved-beam bistable mechanism. J. Microelectromech. Syst. 13, 137–146 (2004).

    Article 

    Google Scholar
     

  • 30.

    Oh, Y. S. & Kota, S. Synthesis of multistable equilibrium compliant mechanisms using combinations of bistable mechanisms. J. Mech. Des. 131, 021002 (2009).

    Article 

    Google Scholar
     

  • 31.

    Cazottes, P., Fernandes, A., Pouget, J. & Hafez, M. Bistable buckled beam: modeling of actuating force and experimental validations. J. Mech. Des. 131, 101001 (2009).

    Article 

    Google Scholar
     

  • 32.

    Camescasse, B., Fernandes, A. & Pouget, J. Bistable buckled beam: elastica modeling and analysis of static actuation. Int. J. Solids Struct. 50, 2881–2893 (2013).

    Article 

    Google Scholar
     

  • 33.

    Wu, C. C., Lin, M. J. & Chen, R. The derivation of a bistable criterion for double V-beam mechanisms. J. Micromech. Microeng. 23, 115005 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 34.

    Ion, A., Wall, L., Kovacs, R. & Baudisch, P. Digital mechanical metamaterials. In Proc. 2017 CHI Conference on Human Factors in Computing Systems 977–988 (ACM, 2017). Demonstrates the use of 3D-printed modular bistable elements to perform digital logic, including ‘combination lock’ mechanisms.

  • 35.

    Song, Y. et al. Additively manufacturable micro-mechanical logic gates. Nat. Commun. 10, 882 (2019). Realizes a full set of digital mechanical logic gates via 3D printing of bistable flexural beams.

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 36.

    Hälg, B. On a micro-electro-mechanical nonvolatile memory cell. IEEE Trans. Electron Dev. 37, 2230–2236 (1990). Provides an early example of the use of constrained beams to represent binary information.

    ADS 
    Article 

    Google Scholar
     

  • 37.

    Raney, J. R. et al. Stable propagation of mechanical signals in soft media using stored elastic energy. Proc. Natl Acad. Sci. USA 113, 9722–9727 (2016). Demonstrates mechanical diodes and logic gates based on the propagation of stable, nonlinear transition waves in architected soft systems of coupled bistable beams.

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    Yasuda, H., Tachi, T., Lee, M. & Yang, J. Origami-based tunable truss structures for non-volatile mechanical memory operation. Nat. Commun. 8, 962 (2017). Demonstrates volumetric origami cells with tuneable stability and stiffness that store bit information in a bistable potential-energy landscape.

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 39.

    Hanna, B. H., Lund, J. M., Lang, R. J., Magleby, S. P. & Howell, L. L. Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Mater. Struct. 23, 094009 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 40.

    Silverberg, J. L. et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat. Mater. 14, 389–393 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 41.

    Saito, K., Tsukahara, A. & Okabe, Y. New deployable structures based on an elastic origami model. J. Mech. Des. 137, 021402 (2015).

    Article 

    Google Scholar
     

  • 42.

    Jianguo, C., Xiaowei, D., Ya, Z., Jian, F. & Yongming, T. Bistable behavior of the cylindrical origami structure with Kresling pattern. J. Mech. Des. 137, 061406 (2015).

    Article 

    Google Scholar
     

  • 43.

    Waitukaitis, S., Menaut, R., Chen, B. G. & van Hecke, M. Origami multistability: from single vertices to metasheets. Phys. Rev. Lett. 114, 055503 (2015).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 44.

    Yasuda, H. & Yang, J. Reentrant origami-based metamaterials with negative Poisson’s ratio and bistability. Phys. Rev. Lett. 114, 185502 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 45.

    Ishida, S., Uchida, H., Shimosaka, H. & Hagiwara, I. Design and numerical analysis of vibration isolators with quasi-zero-stiffness characteristics using bistable foldable structures. J. Vib. Acoust. 139, 031015 (2017).

    Article 

    Google Scholar
     

  • 46.

    Fang, H., Li, S., Ji, H. & Wang, K. W. Dynamics of a bistable Miura-origami structure. Phys. Rev. E 95, 052211 (2017).

    ADS 
    MathSciNet 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 47.

    Kamrava, S., Mousanezhad, D., Ebrahimi, H., Ghosh, R. & Vaziri, A. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties. Sci. Rep. 7, 46046 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 48.

    Faber, J. A., Arrieta, A. F. & Studart, A. R. Bioinspired spring origami. Science 359, 1386–1391 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 49.

    Filipov, E. T. & Redoutey, M. Mechanical characteristics of the bistable origami hypar. Extreme Mech. Lett. 25, 16–26 (2018).

    Article 

    Google Scholar
     

  • 50.

    Sengupta, S. & Li, S. Harnessing the anisotropic multistability of stackedorigami mechanical metamaterials for effective modulus programming. J. Intell. Mater. Syst. Struct. 29, 2933–2945 (2018).

    Article 

    Google Scholar
     

  • 51.

    Liu, K., Tachi, T. & Paulino, G. H. Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces. Nat. Commun. 10, 4238 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 52.

    Bhovad, P., Kaufmann, J. & Li, S. Peristaltic locomotion without digital controllers: exploiting multi-stability in origami to coordinate robotic motion. Extreme Mech. Lett. 32, 100552 (2019).

    Article 

    Google Scholar
     

  • 53.

    Yang, N., Zhang, M., Zhu, R. & Niu, X. D. Modular metamaterials composed of foldable obelisk-like units with reprogrammable mechanical behaviors based on multistability. Sci. Rep. 9, 18812 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 54.

    Wang, L.-C. et al. Active reconfigurable tristable square-twist origami. Adv. Funct. Mater. 30, 1909087 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 55.

    Treml, B., Gillman, A., Buskohl, P. & Vaia, R. Origami mechanologic. Proc. Natl Acad. Sci. USA 115, 6916–6921 (2018). Presents an environmentally responsive origami platform using the waterbomb fold pattern as a mechanical storage device that writes, erases and rewrites itself in response to a time-varying environmental signal.

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 56.

    Glusker, M., Hogan, D. M. & Vass, P. The ternary calculating machine of Thomas Fowler. IEEE Ann. Hist. Comput. 27, 4–22 (2005).

    MathSciNet 
    Article 

    Google Scholar
     

  • 57.

    Hayes, B. Computing science: third base. Am. Sci. 89, 490–494 (2001).

    Article 

    Google Scholar
     

  • 58.

    Yasuda, H., Korpas, L. M. & Raney, J. R. Transition waves and formation of domain walls in multistable mechanical metamaterials. Phys. Rev. Appl. 13, 054067 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 59.

    Mahboob, I. & Yamaguchi, H. Bit storage and bit flip operations in an electromechanical oscillator. Nat. Nanotechnol. 3, 275–279 (2008). Demonstrates a volatile mechanical memory device in which binary information is abstracted in the phase offset of the beam oscillation.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 60.

    Badzey, R. L., Zolfagharkhani, G., Gaidarzhy, A. & Mohanty, P. A controllable nanomechanical memory element. Appl. Phys. Lett. 85, 3587 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 61.

    Noh, H., Shim, S. B., Jung, M., Khim, Z. G. & Kim, J. A mechanical memory with a dc modulation of nonlinear resonance. Appl. Phys. Lett. 97, 033116 (2010).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 62.

    Mahboob, I., Flurin, E., Nishiguchi, K., Fujiwara, A. & Yamaguchi, H. Interconnect-free parallel logic circuits in a single mechanical resonator. Nat. Commun. 2, 198 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 63.

    Ahmed, S. et al. A compact adder and reprogrammable logic gate using micro-electromechanical resonators with partial electrodes. IEEE Trans. Circuits Syst. II 66, 2057–2061 (2019).

    Article 

    Google Scholar
     

  • 64.

    Serra-Garcia, M. Turing-complete mechanical processor via automated nonlinear system design. Phys. Rev. E 100, 042202 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 65.

    Venstra, W. J., Westra, H. J. R. & Van Der Zant, H. S. J. Mechanical stiffening, bistability, and bit operations in a microcantilever. Appl. Phys. Lett. 97, 193107 (2010). Utilizes nonlinear dynamics in microcantilevers to demonstrate bit operations in volatile dynamic systems through modulation of the driving frequency.

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 66.

    Zhang, S., Yin, L. & Fang, N. Focusing ultrasound with an acoustic metamaterial network. Phys. Rev. Lett. 102, 194301 (2009).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 67.

    Nesterenko, V. F. Dynamics of Heterogeneous Materials (Springer-Verlag, 2001).

  • 68.

    Liang, B., Guo, X. S., Tu, J., Zhang, D. & Cheng, J. C. An acoustic rectifier. Nat. Mater. 9, 989–992 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 69.

    Li, N. et al. Colloquium: Phononics: Manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys. 84, 1045–1066 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 70.

    Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 71.

    Kim, E. & Yang, J. Wave propagation in single column woodpile phononic crystals: formation of tunable band gaps. J. Mech. Phys. Solids 71, 33–45 (2014).

    ADS 
    MATH 
    Article 

    Google Scholar
     

  • 72.

    Fleury, R., Sounas, D. L., Sieck, C. F., Haberman, M. R. & Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343, 516–519 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 73.

    Zheng, B. & Xu, J. Mechanical logic switches based on DNA-inspired acoustic metamaterials with ultrabroad low-frequency band gaps. J. Phys. D 50, 465601 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 74.

    Bilal, O. R., Foehr, A. & Daraio, C. Bistable metamaterial for switching and cascading elastic vibrations. Proc. Natl Acad. Sci. USA 114, 4603–4606 (2017). Uses geometric nonlinearities to switch and amplify elastic vibrations via magnetic coupling, allowing logic and simple calculations.

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 75.

    Li, F., Anzel, P., Yang, J., Kevrekidis, P. G. & Daraio, C. Granular acoustic switches and logic elements. Nat. Commun. 5, 5311 (2014). Provides an example of a mechanical metamaterial that allows logic operations via nonlinear dynamics in a granular chain.

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 76.

    Li, X. F. et al. Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Phys. Rev. Lett. 106, 084301 (2011).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 77.

    Babaee, S., Viard, N., Wang, P., Fang, N. X. & Bertoldi, K. Harnessing deformation to switch on and off the propagation of sound. Adv. Mater. 28, 1631–1635 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 78.

    Merkle, R. C. Two types of mechanical reversible logic. Nanotechnology 4, 114–131 (1993).

    ADS 
    Article 

    Google Scholar
     

  • 79.

    Howard, M. LEGO Logic Gates and Mechanical Computing https://www.randomwraith.com/logic.html (accessed 19 August 2020).

  • 80.

    Saharia, K. Lego Logic http://web.archive.org/web/20140206173429/http://keshavsaharia.com/2011/05/29/lego-logic (accessed 19 August 2020).

  • 81.

    Merkle, R. C. et al. Mechanical computing systems using only links and rotary joints. J. Mech. Robot. 10, 061006 (2018).

    Article 

    Google Scholar
     

  • 82.

    Berwind, M. F., Kamas, A. & Eberl, C. A hierarchical programmable mechanical metamaterial unit cell showing metastable shape memory. Adv. Eng. Mater. 20, 1800771 (2018).

    Article 

    Google Scholar
     

  • 83.

    Zhang, T., Cheng, Y., Guo, J. Z., Xu, J. Y. & Liu, X. J. Acoustic logic gates and Boolean operation based on self-collimating acoustic beams. Appl. Phys. Lett. 106, 113503 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 84.

    Wu, Q., Cui, C., Bertrand, T., Shattuck, M. D. & O’Hern, C. S. Active acoustic switches using two-dimensional granular crystals. Phys. Rev. E 99, 062901 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 85.

    Faber, J. A., Udani, J. P., Riley, K. S., Studart, A. R. & Arrieta, A. F. Dome-patterned metamaterial sheets. Adv. Sci. 7, 2001955 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 86.

    Shan, S. et al. Multistable architected materials for trapping elastic strain energy. Adv. Mater. 27, 4296–4301 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 87.

    Coulais, C., Teomy, E., de Reus, K., Shokef, Y. & van Hecke, M. Combinatorial design of textured mechanical metamaterials. Nature 535, 529–532 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 88.

    Frenzel, T., Kadic, M. & Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072–1074 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 89.

    Kane, C. L. & Lubensky, T. C. Topological boundary modes in isostatic lattices. Nat. Phys. 10, 39–45 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 90.

    Süsstrunk, R. & Huber, S. D. Observation of phononic helical edge states in a mechanical topological insulator. Science 349, 47–50 (2015).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 91.

    Nash, L. M. et al. Topological mechanics of gyroscopic metamaterials. Proc. Natl Acad. Sci. USA 112, 14495–14500 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 92.

    Paulose, J., Meeussen, A. S. & Vitelli, V. Selective buckling via states of self-stress in topological metamaterials. Proc. Natl Acad. Sci. USA 112, 7639–7644 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 93.

    Chaunsali, R., Chen, C. W. & Yang, J. Experimental demonstration of topological waveguiding in elastic plates with local resonators. New J. Phys. 20, 113036 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 94.

    Liu, B. et al. Topological kinematics of origami metamaterials. Nat. Phys. 14, 811–815 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 95.

    Shi, X., Chaunsali, R., Li, F. & Yang, J. Elastic Weyl points and surface arc states in three-dimensional structures. Phys. Rev. Appl. 12, 024058 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 96.

    Bilal, O. R., Süsstrunk, R., Daraio, C. & Huber, S. D. Intrinsically polar elastic metamaterials. Adv. Mater. 29, 1700540 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 97.

    Sigmund, O. On the design of compliant mechanisms using topology optimization. Mechan. Struct. Mach. 25, 493–524 (1997).

    Article 

    Google Scholar
     

  • 98.

    Howell, L. L., Midha, A. & Norton, T. Evaluation of equivalent spring stiffness for use in a pseudo-rigid-body model of large-deflection compliant mechanisms. J. Mech. Des. 118, 126–131 (1996).

    Article 

    Google Scholar
     

  • 99.

    Rocks, J. W. et al. Designing allostery-inspired response in mechanical networks. Proc. Natl Acad. Sci. USA 114, 2520–2525 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 100.

    Bielefeldt, B. R., Akleman, E., Reich, G. W., Beran, P. S. & Hartl, D. J. L-system-generated mechanism topology optimization using graph-based interpretation. J. Mech. Robot. 11, 020905 (2019).

    Article 

    Google Scholar
     

  • 101.

    Wilson, K. E., Henke, E.-F. M., Slipher, G. A. & Anderson, I. A. Rubbery logic gates. Extreme Mech. Lett. 9, 188–194 (2016).

    Article 

    Google Scholar
     

  • 102.

    Chau, N., Slipher, G. A., O’Brien, B. M., Mrozek, R. A. & Anderson, I. A. A solid-state dielectric elastomer switch for soft logic. Appl. Phys. Lett. 108, 103506 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • 103.

    Wissman, J., Dickey, M. D. & Majidi, C. Field-controlled electrical switch with liquid metal. Adv. Sci. 4, 1700169 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 104.

    Le Ferrand, H., Studart, A. R. & Arrieta, A. F. Filtered mechanosensing using snapping composites with embedded mechano-electrical transduction. ACS Nano 13, 4752–4760 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 105.

    Abdullah, A. M., Braun, P. V. & Hsia, K. J. Programmable shape transformation of elastic spherical domes. Soft Matter 12, 6184–6195 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 106.

    Chen, T., Bilal, O. R., Shea, K. & Daraio, C. Harnessing bistability for directional propulsion of soft, untethered robots. Proc. Natl Acad. Sci. USA 115, 5698–5702 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 107.

    Ambulo, C. P. et al. Four-dimensional printing of liquid crystal elastomers. ACS Appl. Mater. Interfaces 9, 37332–37339 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 108.

    Wani, O. M., Zeng, H. & Priimagi, A. A light-driven artificial flytrap. Nat. Commun. 8, 15546 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 109.

    Deirram, N., Zhang, C., Kermaniyan, S. S., Johnston, A. P. R. & Such, G. K. pH-responsive polymer nanoparticles for drug delivery. Macromol. Rapid Commun. 40, e1800917 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 110.

    Loukaides, E. G., Smoukov, S. K. & Seffen, K. A. Magnetic actuation and transition shapes of a bistable spherical cap. Int. J. Smart Nano Mater. 5, 270–282 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 111.

    Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 112.

    Jackson, J. A. et al. Field responsive mechanical metamaterials. Sci. Adv. 4, eaau6419 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 113.

    Jin, Y. et al. Materials tactile logic via innervated soft thermochromic elastomers. Nat. Commun. 10, 4187 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 114.

    Hu, W., Lum, G. Z., Mastrangeli, M. & Sitti, M. Small-scale soft-bodied robot with multimodal locomotion. Nature 554, 81–85 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 115.

    Zhao, H., O’Brien, K., Li, S. & Shepherd, R. F. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci. Robot. 1, eaai7529 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 116.

    Truby, R. L. et al. Soft somatosensitive actuators via embedded 3D printing. Adv. Mater. 30, e1706383 (2018).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 117.

    Lee, T. H., Bhunia, S. & Mehregany, M. Electromechanical computing at 500 degrees C with silicon carbide. Science 329, 1316–1318 (2010). Demonstrates the capability of electromechanical switches at high temperature.

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 118.

    Blakey, E. in Advances in Unconventional Computing. Emergence, Complexity and Computation (ed. Adamatzky, A.) 165–182 (Springer, 2017).

  • 119.

    Roukes, M. L. Mechanical computation, redux? In IEDM Technical Digest. IEEE International Electron Devices Meeting 2004 539–542 (IEEE, 2004).

  • 120.

    Masmanidis, S. C. et al. Multifunctional nanomechanical systems via tunably coupled piezoelectric actuation. Science 317, 780–783 (2007).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 121.

    Pott, B. V. et al. Mechanical computing redux: relays for integrated circuit applications. Proc. IEEE 98, 2076–2094 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 122.

    Kam, H., Liu, T. J. K., Stojanović, V., Marković, D. & Alon, E. Design, optimization, and scaling of MEM relays for ultra-low-power digital logic. IEEE Trans. Electron Dev. 58, 236–250 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 123.

    Wang, J. & Perez, L. The effectiveness of data augmentation in image classification using deep learning. Preprint at https://arxiv.org/abs/1712.04621 (2017).

  • 124.

    Houthooft, R. et al. VIME: variational information maximizing exploration. Adv. Neural Inf. Process. Syst. 29, 1109–1117 (2016).


    Google Scholar
     

  • 125.

    Null, L. & Lobur, J. The Essentials of Computer Organization and Architecture (Jones & Bartlett Publishers, 2015).

  • 126.

    Sauder, J. et al. Automation Rover for Extreme Environments: NASA Innovative Advanced Concepts (NIAC) Phase I Final Report https://www.nasa.gov/sites/default/files/atoms/files/niac_2016_phasei_saunder_aree_tagged.pdf (NASA, 2017).

  • Source link