April 26, 2024

Whole-cell organelle segmentation in volume electron microscopy – Nature

  • 1.

    Xu, C. S. et al. An open-access volume electron microscopy atlas of whole cells and tissues. Nature https://doi.org/10.1038/s41586-021-03992-4 (2021).

  • 2.

    Valm, A. M. et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546, 162–167 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Turaga, S. C. et al. Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22, 511–538 (2010).

    Article 

    Google Scholar
     

  • 4.

    Ciresan, D., Giusti, A., Gambardella, L. M. & Schmidhuber, J. Deep neural networks segment neuronal membranes in electron microscopy images. In Proc. 25th International Conference on Neural Information Processing Systems (eds Pereira, F., Burges, C. J. C., Bottou, L. & Weinberger, K. Q.) 2843–2851 (Curran Associates, 2012).

  • 5.

    Januszewski, M. et al. High-precision automated reconstruction of neurons with flood-filling networks. Nat. Methods 15, 605–610 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Funke, J. et al. Large scale image segmentation with structured loss based deep learning for connectome reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1669–1680 (2019).

    Article 

    Google Scholar
     

  • 7.

    Kreshuk, A. et al. Automated detection and segmentation of synaptic contacts in nearly isotropic serial electron microscopy images. PLoS ONE 6, e24899 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Becker, C., Ali, K., Knott, G. & Fua, P. Learning context cues for synapse segmentation in EM volumes. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2012 (eds Ayache, N., Delingette, H., Golland, P. & Mori, K.) 585–592 (Springer, 2012).

  • 9.

    Dorkenwald, S. et al. Automated synaptic connectivity inference for volume electron microscopy. Nat. Methods 14, 435–442 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Heinrich, L., Funke, J., Pape, C., Nunez-Iglesias, J. & Saalfeld, S. Synaptic cleft segmentation in non-isotropic volume electron microscopy of the complete Drosophila brain. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2018 (eds Frangi, A. et al.) 317–325 (Springer, 2018).

  • 11.

    Buhmann, J. et al. Automatic detection of synaptic partners in a whole-brain Drosophila EM dataset. Nat. Methods 18, 771–774 (2021)

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Lucchi, A., Li, Y., Smith, K. & Fua, P. Structured image segmentation using kernelized features. In Computer Vision—ECCV 2012 (eds Fitzgibbon, A. et al.) 400–413 (Springer, 2012).

  • 13.

    Kasthuri, N. et al. Saturated reconstruction of a volume of neocortex. Cell 162, 648–661 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Lucchi, A. et al. Learning structured models for segmentation of 2-D and 3-D imagery. IEEE Trans. Med. Imaging 34, 1096–1110 (2015).

    Article 

    Google Scholar
     

  • 15.

    Márquez Neila, P. et al. A fast method for the segmentation of synaptic junctions and mitochondria in serial electron microscopic images of the brain. Neuroinformatics 14, 235–250 (2016).

    Article 

    Google Scholar
     

  • 16.

    Oztel, I., Yolcu, G., Ersoy, I., White, T. & Bunyak, F. Mitochondria segmentation in electron microscopy volumes using deep convolutional neural network. In 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 1195–1200 (IEEE, 2017).

  • 17.

    Cetina, K., Buenaposada, J. M. & Baumela, L. Multi-class segmentation of neuronal structures in electron microscopy images. BMC Bioinformatics 19, 298 (2018).

    Article 

    Google Scholar
     

  • 18.

    Casser, V., Kang, K., Pfister, H. & Haehn, D. Fast mitochondria detection for connectomics. In Proceedings of Machine Learning Research (PMRL). (Eds Arbel, T. et al.) 121, 111–120 (2020).

  • 19.

    Wei, D. et al. MitoEM dataset: large-scale 3D mitochondria instance segmentation from EM images. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2020 (eds Martel, A. L. et al.) 66–76 (Springer, 2020).

  • 20.

    Perez, A. J. et al. A workflow for the automatic segmentation of organelles in electron microscopy image stacks. Front. Neuroanat. 8, 126 (2014).

    Article 

    Google Scholar
     

  • 21.

    Tek, F. B., Boray Tek, F., Kroeger, T., Mikula, S. & Hamprecht, F. A. Automated cell nucleus detection for large-volume electron microscopy of neural tissue. In 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI) 69–72 (IEEE, 2014).

  • 22.

    Narasimha, R., Ouyang, H., Gray, A., McLaughlin, S. W. & Subramaniam, S. Automatic joint classification and segmentation of whole cell 3D images. Pattern Recognit. 42, 1067–1079 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 23.

    Rigamonti, R., Lepetit, V. & Fua, P. Beyond KernelBoost. https://infoscience.epfl.ch/record/200378/files/rigamonti_tr14a_1.pdf (2014).

  • 24.

    Karabağ, C. et al. Segmentation and modelling of the nuclear envelope of HeLa cells imaged with serial block face scanning electron microscopy. J. Imaging 5, 75 (2019).

    Article 

    Google Scholar
     

  • 25.

    Spiers, H. et al. Deep learning for automatic segmentation of the nuclear envelope in electron microscopy data, trained with volunteer segmentations. Traffic 22, 240–253 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Žerovnik Mekuč, M. et al. Automatic segmentation of mitochondria and endolysosomes in volumetric electron microscopy data. Comput. Biol. Med. 119, 103693 (2020).

    Article 

    Google Scholar
     

  • 27.

    Liu, J. et al. Automatic reconstruction of mitochondria and endoplasmic reticulum in electron microscopy volumes by deep learning. Front. Neurosci. 14, 599 (2020).

    Article 

    Google Scholar
     

  • 28.

    Eckstein, N., Buhmann, J., Cook, M. & Funke, J. Microtubule tracking in electron microscopy volumes. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2020 (eds Martel, A. L. et al.) 99–108 (Springer, 2020).

  • 29.

    Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 (eds Navab, N., Hornegger, J., Wells, W. & Frangi, A.) 234–241 (Springer, 2015).

  • 30.

    Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016 (eds Ourselin, S. et al.) 424–432 (Springer, 2016).

  • 31.

    Funke, J., Wu, J., Barnes, C. Waterz—simple watershed and agglomeration library for affinity graphs. GitHub https://github.com/funkey/waterz/tree/7c530ac (2020).

  • 32.

    Zlateski, A. & Seung, H. S. Image segmentation by size-dependent single linkage clustering of a watershed basin graph. Preprint at https://arxiv.org/abs/1505.00249 (2015).

  • 33.

    Barlan, K. & Gelfand, V. I. Microtubule-based transport and the distribution, tethering, and organization of organelles. Cold Spring Harb. Perspect. Biol. 9, a025817 (2017).

    Article 

    Google Scholar
     

  • 34.

    Goyal, U. & Blackstone, C. Untangling the web: mechanisms underlying ER network formation. Biochim. Biophys. Acta Mol. Cell Res. 1833, 2492–2498 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Blackstone, C. Cellular pathways of hereditary spastic paraplegia. Annu. Rev. Neurosci. 35, 25–47 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Descoteaux, M., Audette, M., Chinzei, K. & Siddiqi, K. Bone enhancement filtering: application to sinus bone segmentation and simulation of pituitary surgery. Comput. Aided Surg. 11, 247–255 (2006).

    Article 

    Google Scholar
     

  • 37.

    Nixon-Abell, J. et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354, aaf3928 (2016).

    Article 

    Google Scholar
     

  • 38.

    Terasaki, M. et al. Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs. Cell 154, 285–296 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Coulter, M. E. et al. The ESCRT-III protein CHMP1A mediates secretion of sonic hedgehog on a distinctive subtype of extracellular vesicles. Cell Rep. 24, 973–986 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Hoffman, D. P. et al. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 367, eaaz5357 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Xu, C. S. et al. Enhanced FIB-SEM systems for large-volume 3D imaging. Elife 6, e25916 (2017).

    Article 

    Google Scholar
     

  • 42.

    Saalfeld, S., Cardona, A., Hartenstein, V. & Tomančák, P. As-rigid-as-possible mosaicking and serial section registration of large ssTEM datasets. Bioinformatics 26, i57–i63 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Saalfeld, S., Pisarev, I. Hanslovsky, P., Bogovic, J.A., Champion, A., Rueden, C., Kirkham, J.A. N5—a scalable Java API for hierarchies of chunked n-dimensional tensors and structured meta-data. GitHub https://github.com/saalfeldlab/n5/tree/n5-2.5.1 (2021)

  • 44.

    Pavelka, M. & Roth, J. Functional Ultrastructure: Atlas of Tissue Biology and Pathology (Springer, 2015).

  • 45.

    Saalfeld, S., Funke, J., Pietzsch T., Nunez-Iglesias, J., Hanslovsky, P., Bogovic, J., Wolny, A., Melnikov, E. BigCAT. GitHub https://github.com/saalfeldlab/bigcat/tree/0.0.3-beta-1 (2018).

  • 46.

    Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).

  • 47.

    Rueden, C., Schindelin, J., Hiner, M., Arganda-Carreras, I., Skeletonize3D. GitHub https://github.com/fiji/Skeletonize3D/tree/Skeletonize3D_-2.1.1 (2017).

  • 48.

    Lee, T. C., Kashyap, R. L. & Chu, C. N. Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP Graph. Models Image Process. 56, 462–478 (1994).

    Article 

    Google Scholar
     

  • 49.

    Klein, S., Staring, M., Murphy, K., Viergever, M. A. & Pluim, J. P. W. elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29, 196–205 (2010).

    Article 

    Google Scholar
     

  • 50.

    Maitin-Shepard, J. et al. Neuroglancer. GitHub https://github.com/google/neuroglancer/tree/v2.22 (2021).

  • 51.

    Abramov, D. et al. React. GitHub https://github.com/facebook/react/tree/v17.0.2 (2021).

  • 52.

    Perlman, E. Visualizing and interacting with large imaging data. Microsc. Microanal. 25, 1374–1375 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 53.

    Hubbard, P. M. et al. Accelerated EM connectome reconstruction using 3D visualization and segmentation graphs. Preprint at https://doi.org/10.1101/2020.01.17.909572 (2020).

  • 54.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 55.

    Pietzsch, T., Saalfeld, S., Preibisch, S. & Tomancak, P. BigDataViewer: visualization and processing for large image data sets. Nat. Methods 12, 481–483 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 56.

    Bogovic, J.A., Saalfeld, S., Hulbert, C., Pisarev, I., Rueden, C., Moon, HK., Preibisch, S. N5-IJ. GitHub https://github.com/saalfeldlab/n5-ij/tree/n5-ij-3.0.0 (2021).

  • 57.

    Amazon Web Services. What is the AWS Command Line Interface? https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html (2021).

  • Source link