May 23, 2024
Neuropeptide regulation of non-redundant ILC2 responses at barrier surfaces – Nature

Neuropeptide regulation of non-redundant ILC2 responses at barrier surfaces – Nature

  • Chu, C., Artis, D. & Chiu, I. M. Neuro-immune interactions in the tissues. Immunity 52, 464–474 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Huh, J. R. & Veiga-Fernandes, H. Neuroimmune circuits in inter-organ communication. Nat. Rev. Immunol. 20, 217–228 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Veiga-Fernandes, H. & Artis, D. Neuronal–immune system cross-talk in homeostasis. Science 359, 1465–1466 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • Yano, H. & Artis, D. Neuronal regulation of innate lymphoid cell responses. Curr. Opin. Immunol. 76, 102205 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Klose, C. S. N. et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549, 282–286 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardoso, V. et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549, 277–281 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallrapp, A. et al. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549, 351–356 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brestoff, J. R. & Artis, D. Immune regulation of metabolic homeostasis in health and disease. Cell 161, 146–160 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klose, C. S. & Artis, D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 17, 765–774 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Zaiss, D. M. W., Gause, W. C., Osborne, L. C. & Artis, D. Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity 42, 216–226 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monticelli, L. A. et al. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin–EGFR interactions. Proc. Natl Acad. Sci. USA 112, 10762–10767 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colonna, M. Innate lymphoid cells: diversity, plasticity, and unique functions in immunity. Immunity 48, 1104–1117 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sonnenberg, G. F. & Hepworth, M. R. Functional interactions between innate lymphoid cells and adaptive immunity. Nat. Rev. Immunol. 19, 599–613 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Guia, S. & Narni-Mancinelli, E. Helper-like innate lymphoid cells in humans and mice. Trends Immunol. 41, 436–452 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Ebbo, M., Crinier, A., Vély, F. & Vivier, E. Innate lymphoid cells: major players in inflammatory diseases. Nat. Rev. Immunol. 17, 665–678 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Chu, C. et al. The ChAT–acetylcholine pathway promotes group 2 innate lymphoid cell responses and anti-helminth immunity. Sci. Immunol. 6, eabe3218 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moriyama, S. et al. β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science 359, 1056–1061 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagashima, H. et al. Neuropeptide CGRP limits group 2 innate lymphoid cell responses and constrains type 2 inflammation. Immunity 51, 682–695.e6 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wallrapp, A. et al. Calcitonin gene-related peptide negatively regulates Alarmin-driven type 2 innate lymphoid cell responses. Immunity 51, 709–723.e706 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, H. et al. Transcriptional atlas of intestinal immune cells reveals that neuropeptide α-CGRP modulates group 2 innate lymphoid cell responses. Immunity 51, 696–708.e9 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hepworth, M. R. et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science 348, 1031–1035 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, L. et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature 568, 405–409 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vély, F. et al. Evidence of innate lymphoid cell redundancy in humans. Nat. Immunol. 17, 1291–1299 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shimshek, D. R. et al. Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 32, 19–26 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Cormack, B. P., Valdivia, R. H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Luche, H., Weber, O., Nageswara Rao, T., Blum, C. & Fehling, H. J. Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur. J. Immunol. 37, 43–53 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlenner, S. M. et al. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity 32, 426–436 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Oliphant, C. J. et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41, 283–295 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klementowicz, J. E., Travis, M. A. & Grencis, R. K. Trichuris muris: a model of gastrointestinal parasite infection. Semin. Immunopathol. 34, 815–828 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zaiss, D. M. et al. Amphiregulin, a TH2 cytokine enhancing resistance to nematodes. Science 314, 1746 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shao, J. & Sheng, H. Amphiregulin promotes intestinal epithelial regeneration: roles of intestinal subepithelial myofibroblasts. Endocrinology 151, 3728–3737 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manzo, N. D., Foster, W. M. & Stripp, B. R. Amphiregulin-dependent mucous cell metaplasia in a model of nonallergic lung injury. Am. J. Respir. Cell Mol. Biol. 47, 349–357 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antignano, F., Mullaly, S. C., Burrows, K. & Zaph, C. Trichuris muris infection: a model of type 2 immunity and inflammation in the gut. J. Vis. Exp. https://doi.org/10.3791/2774 (2011).

  • Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minutti, C. M. et al. Epidermal growth factor receptor expression licenses type-2 helper T cells to function in a T cell receptor-independent fashion. Immunity 47, 710–722.e6 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Salvo, C. et al. NOD2 drives early IL-33-dependent expansion of group 2 innate lymphoid cells during Crohn’s disease-like ileitis. J. Clin. Invest. 131, e140624 (2021).

    PubMed Central 

    Google Scholar
     

  • Inclan-Rico, J. M. et al. Basophils prime group 2 innate lymphoid cells for neuropeptide-mediated inhibition. Nat. Immunol. 21, 1181–1193 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arijs, I. et al. Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut 58, 1612–1619 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Ye, Y. et al. Neuromedin U promotes human type 2 immune responses. Mucosal Immunol. 15, 990–999 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jarick, K. J. et al. Non-redundant functions of group 2 innate lymphoid cells. Nature https://doi.org/10.1038/s41586-022-05395-5 (2022).

  • Buch, T. et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Methods 2, 419–426 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, P. P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Luetteke, N. C. et al. Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126, 2739–2750 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • He, Z. et al. Epithelial-derived IL-33 promotes intestinal tumorigenesis in ApcMin/+ mice. Sci. Rep. 7, 5520 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Longman, R. S. et al. CX3CR1+ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J. Exp. Med. 211, 1571–1583 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simoni, Y. et al. Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity 46, 148–161 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Artis, D. et al. The IL-27 receptor (WSX-1) is an inhibitor of innate and adaptive elements of type 2 immunity. J. Immunol. 173, 5626–5634 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • Susaki, E. A. et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 157, 726–739 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • MacDonald, J. W. affycoretools: Functions useful for those doing repetitive analyses with Affymetrix GeneChips. R package version 1.68.1 (2022).

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Liao, Y., Smyth, G. K. & Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 47, e47 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link