May 4, 2024
Non-canonical β-adrenergic activation of ERK at endosomes – Nature

Non-canonical β-adrenergic activation of ERK at endosomes – Nature

  • Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243–260 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Hayre, M. et al. Genetic evidence that β-arrestins are dispensable for the initiation of β2-adrenergic receptor signaling to ERK. Sci. Signal. 10, eaal3395 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grundmann, M. et al. Lack of beta-arrestin signaling in the absence of active G proteins. Nat. Commun. 9, 341 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luttrell, L. M. et al. Manifold roles of β-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Sci. Signal. 11, eaat7650 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keyes, J. et al. Signaling diversity enabled by Rap1-regulated plasma membrane ERK with distinct temporal dynamics. eLife 9, e57410 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smith, J. S. et al. Noncanonical scaffolding of Gαi and β-arrestin by G protein-coupled receptors. Science 371, eaay1833 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lavoie, H., Gagnon, J. & Therrien, M. ERK signalling: a master regulator of cell behaviour, life and fate. Nat. Rev. Mol. Cell Biol. 21, 607–632 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Eichel, K. & von Zastrow, M. Subcellular organization of GPCR signaling. Trends Pharmacol. Sci. 39, 200–208 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irannejad, R. et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature 495, 534–538 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsvetanova, N. G. & von Zastrow, M. Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat. Chem. Biol. 10, 1061–1065 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kotowski, S. J., Hopf, F. W., Seif, T., Bonci, A. & von Zastrow, M. Endocytosis promotes rapid dopaminergic signaling. Neuron 71, 278–290 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Rooij, J. et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396, 474–477 (1998).

    ADS 
    PubMed 

    Google Scholar
     

  • Kolch, W. et al. Protein kinase Cα activates RAF-1 by direct phosphorylation. Nature 364, 249–252 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Daaka, Y. et al. Essential role for G protein-coupled receptor endocytosis in the activation of mitogen-activated protein kinase. J. Biol. Chem. 273, 685–688 (1998).

    CAS 
    PubMed 

    Google Scholar
     

  • Pierce, K. L., Maudsley, S., Daaka, Y., Luttrell, L. M. & Lefkowitz, R. J. Role of endocytosis in the activation of the extracellular signal-regulated kinase cascade by sequestering and nonsequestering G protein-coupled receptors. Proc. Natl Acad. Sci. USA 97, 1489–1494 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gurevich, V. V. & Gurevich, E. V. Arrestin-mediated signaling: is there a controversy? World J. Biol. Chem. 9, 25–35 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luttrell, L. M. et al. Activation and targeting of extracellular signal-regulated kinases by β-arrestin scaffolds. Proc. Natl Acad. Sci. USA 98, 2449–2454 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tohgo, A. et al. The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J. Biol. Chem. 278, 6258–6267 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Schmitt, D. L. et al. Spatial regulation of AMPK signaling revealed by a sensitive kinase activity reporter. Nat. Commun. 13, 3856 (2021).

  • Chen, M., Sun, T., Zhong, Y., Zhou, X. & Zhang, J. A highly sensitive fluorescent Akt biosensor reveals lysosome-selective regulation of lipid second messengers and kinase activity. ACS Cent. Sci. 7, 2009–2020 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, X. et al. Dynamic visualization of mTORC1 activity in living cells. Cell Rep. 10, 1767–1777 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Allen, M. D. & Zhang, J. Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. Biochem. Biophys. Res. Commun. 348, 716–721 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Miyamoto, T. et al. Compartmentalized AMPK signaling illuminated by genetically encoded molecular sensors and actuators. Cell Rep. 11, 657–670 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaidyanathan, H. et al. ERK MAP kinase is targeted to RSK2 by the phosphoprotein PEA-15. Proc. Natl Acad. Sci. USA 104, 19837–19842 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boned Del Rio, I. et al. SHOC2 complex-driven RAF dimerization selectively contributes to ERK pathway dynamics. Proc. Natl. Acad. Sci. USA 116, 13330–13339 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ariotti, N. et al. Modular detection of GFP-labeled proteins for rapid screening by electron microscopy in cells and organisms. Dev. Cell 35, 513–525 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Gerits, N., Kostenko, S., Shiryaev, A., Johannessen, M. & Moens, U. Relations between the mitogen-activated protein kinase and the cAMP-dependent protein kinase pathways: comradeship and hostility. Cell Signal 20, 1592–1607 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Eichel, K. et al. Catalytic activation of β-arrestin by GPCRs. Nature 557, 381–386 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, G. E., Pessino, V., Huang, B. & von Zastrow, M. Spatial decoding of endosomal cAMP signals by a metastable cytoplasmic PKA network. Nat. Chem. Biol. 17, 558–566 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luttrell, L. M. et al. β-Arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 283, 655–661 (1999).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pierce, K. L., Luttrell, L. M. & Lefkowitz, R. J. New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20, 1532–1539 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Luttrell, L. M. ‘Location, location, location’: activation and targeting of MAP kinases by G protein-coupled receptors. J. Mol. Endocrinol. 30, 117–126 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Beautrait, A. et al. A new inhibitor of the β-arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling. Nat. Commun. 8, 15054 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, B. R. & Lambert, N. A. Activated G protein galphas samples multiple endomembrane compartments. J. Biol. Chem. 291, 20295–20302 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lazar, A. M. et al. G protein-regulated endocytic trafficking of adenylyl cyclase type 9. eLife 9, e58039 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, X. et al. Location-specific inhibition of Akt reveals regulation of mTORC1 activity in the nucleus. Nat. Commun. 11, 6088 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feldman, D. S. et al. Selective inhibition of heterotrimeric Gs signaling. Targeting the receptor-G protein interface using a peptide minigene encoding the Gαs carboxyl terminus. J. Biol. Chem. 277, 28631–28640 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Irannejad, R. et al. Functional selectivity of GPCR-directed drug action through location bias. Nat. Chem. Biol. 13, 799–806 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plotnikov, A., Zehorai, E., Procaccia, S. & Seger, R. The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys. Acta 1813, 1619–1633 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, W. & Liu, H. T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 12, 9–18 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Wheeler, E. C. et al. Integrative RNA-omics discovers GNAS alternative splicing as a phenotypic driver of splicing factor-mutant neoplasms. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-21-0508 (2021).

  • Weis, W. I. & Kobilka, B. K. The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem. 87, 897–919 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jones, A. J. Y., Gabriel, F., Tandale, A. & Nietlispach, D. Structure and dynamics of GPCRs in lipid membranes: physical principles and experimental approaches. Molecules 25, 4729 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Arumugam, S. & Kaur, A. The lipids of the early endosomes: making multimodality work. ChemBioChem 18, 1053–1060 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Xiao, K. et al. Functional specialization of β-arrestin interactions revealed by proteomic analysis. Proc. Natl Acad. Sci. USA 104, 12011–12016 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, V. et al. Illuminating the Onco-GPCRome: novel G protein-coupled receptor-driven oncocrine networks and targets for cancer immunotherapy. J. Biol. Chem. 294, 11062–11086 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patra, K. C. et al. Mutant GNAS drives pancreatic tumourigenesis by inducing PKA-mediated SIK suppression and reprogramming lipid metabolism. Nat. Cell Biol. 20, 811–822 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arang, N. & Gutkind, J. S. G Protein-coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett. 594, 4201–4232 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Insel, P. A. et al. GPCRomics: GPCR expression in cancer cells and tumors identifies new, potential biomarkers and therapeutic targets. Front. Pharmacol. 9, 431 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Source link