May 8, 2024
Open-channel metal particle superlattices – Nature

Open-channel metal particle superlattices – Nature

  • Kong, L., Zhong, M., Shuang, W., Xu, Y. & Bu, X.-H. Electrochemically active sites inside crystalline porous materials for energy storage and conversion. Chem. Soc. Rev. 49, 2378–2407 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Slater, A. G. & Cooper, A. I. Function-led design of new porous materials. Science 348, aaa8075 (2015).

    PubMed 

    Google Scholar
     

  • Wang, J. et al. New insights into the structure–performance relationships of mesoporous materials in analytical science. Chem. Soc. Rev. 47, 8766–8803 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Lee, J.-S. M. & Cooper, A. I. Advances in conjugated microporous polymers. Chem. Rev. 120, 2171–2214 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Finnefrock, A. C., Ulrich, R., Toombes, G. E. S., Gruner, S. M. & Wiesner, U. The plumber’s nightmare: a new morphology in block copolymer−ceramic nanocomposites and mesoporous aluminosilicates. J. Am. Chem. Soc. 125, 13084–13093 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, J. & Wang, B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem. Soc. Rev. 46, 6927–6945 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, M.-H. et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chem. Soc. Rev. 45, 3479–3563 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Vyatskikh, A. et al. Additive manufacturing of 3D nano-architected metals. Nat. Commun. 9, 593 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirt, L., Reiser, A., Spolenak, R. & Zambelli, T. Additive manufacturing of metal structures at the micrometer scale. Adv. Mater. 29, 1604211 (2017).


    Google Scholar
     

  • Ullal, C. K. et al. Photonic crystals through holographic lithography: simple cubic, diamond-like, and gyroid-like structures. Appl. Phys. Lett. 84, 5434–5436 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • Park, H. & Lee, S. Double gyroids for frequency-isolated Weyl points in the visible regime and interference lithographic design. ACS Photonics 7, 1577–1585 (2020).

    CAS 

    Google Scholar
     

  • Phan, A. et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43, 58–67 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    PubMed 

    Google Scholar
     

  • Armstrong, E. & O’Dwyer, C. Artificial opal photonic crystals and inverse opal structures—fundamentals and applications from optics to energy storage. J. Mater. Chem. C 3, 6109–6143 (2015).

    CAS 

    Google Scholar
     

  • Hoeven, J. E. S., van der, Shneidman, A. V., Nicolas, N. J. & Aizenberg, J. Evaporation-induced self-assembly of metal oxide inverse opals: from synthesis to applications. Acc. Chem. Res. 55, 1809–1820 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Friedrichs, O. D., Dress, A. W. M., Huson, D. H., Klinowski, J. & Mackay, A. L. Systematic enumeration of crystalline networks. Nature 400, 644–647 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoffmann, F. Introduction to Crystallography (Springer Nature, 2020).

  • Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Samanta, D., Zhou, W., Ebrahimi, S. B., Petrosko, S. H. & Mirkin, C. A. Programmable matter: the nanoparticle atom and DNA bond. Adv. Mater. 34, e2107875 (2022).

    PubMed 

    Google Scholar
     

  • Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Brien, M. N., Lin, H. X., Girard, M., Olvera De La Cruz, M. & Mirkin, C. A. Programming colloidal crystal habit with anisotropic nanoparticle building blocks and DNA bonds. J. Am. Chem. Soc. 138, 14562–14565 (2016).

    PubMed 

    Google Scholar
     

  • Tian, Y. et al. Lattice engineering through nanoparticle–DNA frameworks. Nat. Mater. 15, 654–661 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, T. et al. 3D DNA origami crystals. Adv. Mater. 30, 1800273 (2018).


    Google Scholar
     

  • Ham, S., Jang, H.-J., Song, Y., Shuford, K. L. & Park, S. Octahedral and cubic gold nanoframes with platinum framework. Angew. Chem. Int. Edn Engl. 54, 9025–9028 (2015).

    CAS 

    Google Scholar
     

  • Yang, T.-H. et al. Noble-metal nanoframes and their catalytic applications. Chem. Rev. 121, 796–833 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth. ACS Nano 7, 4586–4594 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Auyeung, E. et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505, 73–77 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • Auyeung, E., Macfarlane, R. J., Choi, C. H. J., Cutler, J. I. & Mirkin, C. A. Transitioning DNA-engineered nanoparticle superlattices from solution to the solid state. Adv. Mater. 24, 5181–5186 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Oh, T. et al. Stabilization of colloidal crystals engineered with DNA. Adv. Mater. 31, 1805480 (2019).


    Google Scholar
     

  • Jones, M. R. et al. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat. Mater. 9, 913–917 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Senesi, A. J. et al. Oligonucleotide flexibility dictates crystal quality in DNA-programmable nanoparticle superlattices. Adv. Mater. 26, 7235–7240 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Gong, J. et al. Shape-dependent ordering of gold nanocrystals into large-scale superlattices. Nat. Commun. 8, 14038 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, Y. et al. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. Nat. Mater. 19, 789–796 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, L. et al. Position- and orientation-controlled growth of Wulff-shaped colloidal crystals engineered with DNA. Adv. Mater. 32, 2005316 (2020).

    CAS 

    Google Scholar
     

  • Millstone, J. E., Wei, W., Jones, M. R., Yoo, H. & Mirkin, C. A. Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett. 8, 2526–2529 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, K. L. et al. Assembly of reconfigurable one-dimensional colloidal superlattices due to a synergy of fundamental nanoscale forces. Proc. Natl Acad. Sci. USA 109, 2240–2245 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Brien, M. N., Jones, M. R., Brown, K. A. & Mirkin, C. A. Universal noble metal nanoparticle seeds realized through iterative reductive growth and oxidative dissolution reactions. J. Am. Chem. Soc. 136, 7603–7606 (2014).

    PubMed 

    Google Scholar
     

  • Li, Y. et al. Corner-, edge-, and facet-controlled growth of nanocrystals. Sci. Adv. 7, eabf1410 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Yan, R., Venkatakrishnan, S. V., Liu, J., Bouman, C. A. & Jiang, W. MBIR: a cryo-ET 3D reconstruction method that effectively minimizes missing wedge artifacts and restores missing information. J. Struct. Biol. 206, 183–192 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    ADS 
    CAS 

    Google Scholar
     

  • Werner, W. S. M., Glantschnig, K. & Ambrosch-Draxl, C. Optical constants and inelastic electron-scattering data for 17 elemental metals. J. Phys. Chem. Ref. Data 38, 1013–1092 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • Source link