April 26, 2024
Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies – Nature

Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies – Nature

  • Macpherson, A. J., de Aguero, M. G. & Ganal-Vonarburg, S. C. How nutrition and the maternal microbiota shape the neonatal immune system. Nat. Rev. Immunol. 17, 508–517 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kalbermatter, C., Fernandez Trigo, N., Christensen, S. & Ganal-Vonarburg, S. C. Maternal microbiota, early life colonization and breast milk drive immune development in the newborn. Front. Immunol. 12, 683022 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539–544 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jain, N. The early life education of the immune system: moms, microbes and (missed) opportunities. Gut Microbes 12, 1824564 (2020).

    Article 

    Google Scholar
     

  • Hornef, M. W. & Torow, N. ‘Layered immunity’ and the ‘neonatal window of opportunity’ — timed succession of non-redundant phases to establish mucosal host–microbial homeostasis after birth. Immunology 159, 15–25 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Torow, N., Marsland, B. J., Hornef, M. W. & Gollwitzer, E. S. Neonatal mucosal immunology. Mucosal Immunol. 10, 5–17 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Schreurs, R. et al. Human fetal TNF-α-cytokine-producing CD4+ effector memory T cells promote intestinal development and mediate inflammation early in life. Immunity 50, 462–476 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Stras, S. F. et al. Maturation of the human intestinal immune system occurs early in fetal development. Dev. Cell 51, 357–373 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. CD4 T cells with effector memory phenotype and function develop in the sterile environment of the fetus. Sci. Transl. Med. 6, 238ra272 (2014).

    Article 

    Google Scholar
     

  • Tissier, H. Recherches sur la flore intestinale des nourrissons: (état normal et pathologique). Doctoral dissertation, BIU Santé (1900).

  • He, Q. et al. The meconium microbiota shares more features with the amniotic fluid microbiota than the maternal fecal and vaginal microbiota. Gut Microbes 12, 1794266 (2020).

    Article 

    Google Scholar
     

  • Stinson, L. et al. Comparison of bacterial DNA profiles in mid-trimester amniotic fluid samples from preterm and term deliveries. Front. Microbiol. 11, 415 (2020).

    Article 

    Google Scholar
     

  • Younge, N. et al. Fetal exposure to the maternal microbiota in humans and mice. JCI Insight 4, e127806 (2019).

    Article 

    Google Scholar
     

  • Stinson, L. F., Boyce, M. C., Payne, M. S. & Keelan, J. A. The not-so-sterile womb: evidence that the human fetus is exposed to bacteria prior to birth. Front. Microbiol. 10, 1124 (2019).

    Article 

    Google Scholar
     

  • Aagaard, K. et al. The placenta harbors a unique microbiome. Sci. Transl. Med. 6, 237ra265 (2014).


    Google Scholar
     

  • D’Argenio, V. The prenatal microbiome: a new player for human health. High Throughput 7, 38 (2018).

    Article 

    Google Scholar
     

  • Funkhouser, L. J. & Bordenstein, S. R. Mom knows best: the universality of maternal microbial transmission. PLoS Biol. 11, e1001631 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Stinson, L. F., Payne, M. S. & Keelan, J. A. Planting the seed: origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit. Rev. Microbiol. 43, 352–369 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Walker, R. W., Clemente, J. C., Peter, I. & Loos, R. J. F. The prenatal gut microbiome: are we colonized with bacteria in utero? Pediatr. Obes. 12 (Suppl. 1), 3–17 (2017).

    Article 

    Google Scholar
     

  • Bolte, E. E., Moorshead, D. & Aagaard, K. M. Maternal and early life exposures and their potential to influence development of the microbiome. Genome Med. 14, 4 (2022).

    Article 

    Google Scholar
     

  • Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).

    Article 

    Google Scholar
     

  • Blaser, M. J. et al. Lessons learned from the prenatal microbiome controversy. Microbiome 9, 8 (2021). Discussion about the prenatal microbiome controversy by several experts in the microbiome field.

    Article 

    Google Scholar
     

  • Bushman, F. D. De-discovery of the placenta microbiome. Am. J. Obstet. Gynecol. 220, 213–214 (2019).

    Article 

    Google Scholar
     

  • Editorial. Microbiome studies and “blue whales in the Himalayas”. Lancet Infect. Dis. 18, 925 https://doi.org/10.1016/S1473-3099(18)30503-6 (2018).

  • Hornef, M. & Penders, J. Does a prenatal bacterial microbiota exist? Mucosal Immunol. 10, 598–601 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Perez-Muñoz, M. E., Arrieta, M. C., Ramer-Tait, A. E. & Walter, J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 5, 48 (2017).

    Article 

    Google Scholar
     

  • Segata, N. No bacteria found in healthy placentas. Nature 572, 317–318 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Walter, J. & Hornef, M. W. A philosophical perspective on the prenatal in utero microbiome debate. Microbiome 9, 5 (2021).

    Article 

    Google Scholar
     

  • de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329–334 (2019). Sequencing study using robust controls, concluding that there is no evidence for a placental microbiome.

    Article 
    ADS 

    Google Scholar
     

  • Kennedy, K. M. et al. Fetal meconium does not have a detectable microbiota before birth. Nat. Microbiol. 6, 865–873 (2021). The only sequencing study so far that characterized the microbial populations in human fetuses using meconium samples obtained after C-section, concluding that there is no evidence for a microbiota.

    Article 
    CAS 

    Google Scholar
     

  • Kuperman, A. A. et al. Deep microbial analysis of multiple placentas shows no evidence for a placental microbiome. BJOG 127, 159–169 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lauder, A. P. et al. Comparison of placenta samples with contamination controls does not provide evidence for a distinct placenta microbiota. Microbiome 4, 29 (2016).

    Article 

    Google Scholar
     

  • Leiby, J. S. et al. Lack of detection of a human placenta microbiome in samples from preterm and term deliveries. Microbiome 6, 196 (2018).

    Article 

    Google Scholar
     

  • Theis, K. R. et al. Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am. J. Obstet. Gynecol. 220, 267.e1–267.e39 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Sterpu, I. et al. No evidence for a placental microbiome in human pregnancies at term. Am. J. Obstet. Gynecol. 224, 296.e1–296.e23 (2021).

    Article 
    CAS 

    Google Scholar
     

  • de Goffau, M. C. et al. Recognizing the reagent microbiome. Nat. Microbiol. 3, 851–853 (2018).

    Article 

    Google Scholar
     

  • Olomu, I. N. et al. Elimination of “kitome” and “splashome” contamination results in lack of detection of a unique placental microbiome. BMC Microbiol. 20, 157 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).

    Article 

    Google Scholar
     

  • Rackaityte, E. et al. Viable bacterial colonization is highly limited in the human intestine in utero. Nat. Med. 26, 599–607 (2020). Microbial characterization of fetal samples obtained after vaginal delivery, reporting highly limited bacterial colonization.

    Article 
    CAS 

    Google Scholar
     

  • Mishra, A. et al. Microbial exposure during early human development primes fetal immune cells. Cell 184, 3394–3409 (2021). Analysis of fetal tissues obtained after medical termination of pregnancy in the second trimester and vaginal delivery, reporting microbial colonization of the fetus and bacterial priming of fetal immune cells.

    Article 
    CAS 

    Google Scholar
     

  • Li, Y. et al. In utero human intestine harbors unique metabolomic features including bacterial metabolites. JCI Insight 5, e138751 (2020). Characterization of the microbiota in fetuses obtained by vaginal delivery, reporting no evidence for bacterial colonization.

    Article 

    Google Scholar
     

  • Lim, E. S., Rodriguez, C. & Holtz, L. R. Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community. Microbiome 6, 87 (2018).

    Article 

    Google Scholar
     

  • Liu, Y. et al. Midtrimester amniotic fluid from healthy pregnancies has no microorganisms using multiple methods of microbiologic inquiry. Am. J. Obstet. Gynecol. 223, 248.e1–248.e21 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rehbinder, E. M. et al. Is amniotic fluid of women with uncomplicated term pregnancies free of bacteria? Am. J. Obstet. Gynecol. 219, 289.e1–289.e12 (2018).

    Article 

    Google Scholar
     

  • de Goffau, M. C., Charnock-Jones, D. S., Smith, G. C. S. & Parkhill, J. Batch effects account for the main findings of an in utero human intestinal bacterial colonization study. Microbiome 9, 6 (2021).

    Article 

    Google Scholar
     

  • Powell, S., Perry, J. & Meikle, D. Microbial contamination of non-disposable instruments in otolaryngology out-patients. J. Laryngol. Otol. 117, 122–125 (2003).

    Article 

    Google Scholar
     

  • Wistrand, C., Soderquist, B. & Sundqvist, A. S. Time-dependent bacterial air contamination of sterile fields in a controlled operating room environment: an experimental intervention study. J. Hosp. Infect. 110, 97–102 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gomez de Aguero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016). Study demonstrating that aspects of prenatal immune development induced by maternal microbial compounds can occur in the absence of live microorganisms in the fetus.

    Article 
    ADS 

    Google Scholar
     

  • Vuong, H. E. et al. The maternal microbiome modulates fetal neurodevelopment in mice. Nature 586, 281–286 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Baker, J. M., Chase, D. M. & Herbst-Kralovetz, M. M. Uterine microbiota: residents, tourists, or invaders? Front. Immunol. 9, 208 (2018).

    Article 

    Google Scholar
     

  • Cherry, S. H., Filler, M. & Harvey, H. Lysozyme content of amniotic fluid. Am. J. Obstet. Gynecol. 116, 639–642 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Soto, E. et al. Human β-defensin-2: a natural antimicrobial peptide present in amniotic fluid participates in the host response to microbial invasion of the amniotic cavity. J. Matern. Fetal Neonatal Med. 20, 15–22 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Reichhardt, M. P. et al. The salivary scavenger and agglutinin in early life: diverse roles in amniotic fluid and in the infant intestine. J. Immunol. 193, 5240–5248 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Sinha, R. et al. Assessment of variation in microbial community amplicon sequencing by the Microbiome Quality Control (MBQC) project consortium. Nat. Biotechnol. 35, 1077–1086 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Grettenberger, C. L. Novel Gloeobacterales spp. from diverse environments across the globe. mSphere 6, e0006121 (2021).

    Article 

    Google Scholar
     

  • Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4680–4687 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Megli, C. J. & Coyne, C. B. Infections at the maternal-fetal interface: an overview of pathogenesis and defence. Nat. Rev. Microbiol. 20, 67–82 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Armistead, B., Oler, E., Adams Waldorf, K. & Rajagopal, L. The double life of group B Streptococcus: asymptomatic colonizer and potent pathogen. J. Mol. Biol. 431, 2914–2931 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dodd, J. M. & Crowther, C. A. Misoprostol for induction of labour to terminate pregnancy in the second or third trimester for women with a fetal anomaly or after intrauterine fetal death. Cochrane Database Syst. Rev. 2010, CD004901 (2010).


    Google Scholar
     

  • Nijman, T. A. et al. Association between infection and fever in terminations of pregnancy using misoprostol: a retrospective cohort study. BMC Pregnancy Childbirth 17, 7 (2017).

    Article 

    Google Scholar
     

  • Rackaityte, E. et al. Corroborating evidence refutes batch effect as explanation for fetal bacteria. Microbiome 9, 10 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Duar, R. M. et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 41, S27–S48 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Dos Santos, S. J. et al. Early neonatal meconium does not have a demonstrable microbiota determined through use of robust negative controls with cpn60-based microbiome profiling. Microbiol. Spectr. 9, e0006721 (2021).

    Article 

    Google Scholar
     

  • Heida, F. H. et al. Weight shapes the intestinal microbiome in preterm infants: results of a prospective observational study. BMC Microbiol. 21, 219 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Backhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).

    Article 

    Google Scholar
     

  • Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117–121 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Podlesny, D. & Fricke, W. F. Strain inheritance and neonatal gut microbiota development: a meta-analysis. Int. J. Med. Microbiol. 311, 151483 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bajorek, S. et al. Initial microbial community of the neonatal stomach immediately after birth. Gut Microbes 10, 289–297 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S. M. et al. Gastric fluid versus amniotic fluid analysis for the identification of intra-amniotic infection due to Ureaplasma species. J. Matern. Fetal Neonatal Med. 29, 2579–2587 (2016).

    CAS 

    Google Scholar
     

  • Martin, R. et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS One 11, e0158498 (2016).

    Article 

    Google Scholar
     

  • Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8, 343ra381 (2016).

    Article 

    Google Scholar
     

  • Mitchell, C. M. et al. Delivery mode affects stability of early infant gut microbiota. Cell Rep. Med. 1, 100156 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yassour, M. et al. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. Cell Host Microbe 24, 146–154 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Korpela, K. et al. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 183, 324–334 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).

    Article 

    Google Scholar
     

  • Dyrhovden, R. et al. Managing contamination and diverse bacterial loads in 16S rRNA deep sequencing of clinical samples: implications of the law of small numbers. mBio 12, e0059821 (2021).

    Article 

    Google Scholar
     

  • Laurence, M., Hatzis, C. & Brash, D. E. Common contaminants in next-generation sequencing that hinder discovery of low-abundance microbes. PLoS One 9, e97876 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Read, S. J. Recovery efficiences on nucleic acid extraction kits as measured by quantitative LightCycler PCR. Mol. Pathol. 54, 86–90 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Walker, S. P. et al. Non-specific amplification of human DNA is a major challenge for 16S rRNA gene sequence analysis. Sci. Rep. 10, 16356 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cebra, J. J., Periwal, S. B., Lee, G., Lee, F. & Shroff, K. E. Development and maintenance of the gut-associated lymphoid tissue (GALT): the roles of enteric bacteria and viruses. Dev. Immunol. 6, 13–18 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wesemann, D. R. et al. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature 501, 112–115 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, H. et al. Mucosal or systemic microbiota exposures shape the B cell repertoire. Nature 584, 274–278 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bacher, P. et al. Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176, 1340–1355 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kabbert, J. et al. High microbiota reactivity of adult human intestinal IgA requires somatic mutations. J. Exp. Med. 217, e20200275 (2020).

    Article 

    Google Scholar
     

  • Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McGovern, N. et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature 546, 662–666 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rechavi, E. et al. Timely and spatially regulated maturation of B and T cell repertoire during human fetal development. Sci. Transl. Med. 7, 276ra225 (2015).

    Article 

    Google Scholar
     

  • Casas, R. & Bjorksten, B. Detection of Fel d 1-immunoglobulin G immune complexes in cord blood and sera from allergic and non-allergic mothers. Pediatr. Allergy Immunol. 12, 59–64 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Szepfalusi, Z. et al. Transplacental priming of the human immune system with environmental allergens can occur early in gestation. J. Allergy Clin. Immunol. 106, 530–536 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Vuillermin, P. J. et al. Maternal carriage of Prevotella during pregnancy associates with protection against food allergy in the offspring. Nat. Commun. 11, 1452 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ganal-Vonarburg, S. C., Hornef, M. W. & Macpherson, A. J. Microbial–host molecular exchange and its functional consequences in early mammalian life. Science 368, 604–607 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lockhart, P. B. et al. Bacteremia associated with toothbrushing and dental extraction. Circulation 117, 3118–3125 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Fisher, R. A., Gollan, B. & Helaine, S. Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 15, 453–464 (2017).

    Article 
    CAS 

    Google Scholar
     

  • De Boeck, I. et al. Lactobacilli Have a Niche in the Human Nose. Cell Rep. 31, 107674 (2020).

    Article 

    Google Scholar
     

  • Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. C. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat. Rev. Microbiol. 8, 171–184 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Collins, J. et al. Fibrinogen-binding and platelet-aggregation activities of a Lactobacillus salivarius septicaemia isolate are mediated by a novel fibrinogen-binding protein. Mol. Microbiol. 85, 862–877 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kankainen, M. et al. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc. Natl Acad. Sci. USA 106, 17193–17198 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rampersaud, R. et al. Inerolysin, a cholesterol-dependent cytolysin produced by Lactobacillus iners. J. Bacteriol. 193, 1034–1041 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wuyts, S. et al. Large-scale phylogenomics of the Lactobacillus casei group highlights taxonomic inconsistencies and reveals novel clade-associated features. mSystems 2, e00061-17 (2017).

    Article 

    Google Scholar
     

  • Weinberg, E. D. The Lactobacillus anomaly: total iron abstinence. Perspect. Biol. Med. 40, 578–583 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Hazards, E. Po. B. et al. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 7: suitability of taxonomic units notified to EFSA until September 2017. EFSA J. 16, e05131 (2018).


    Google Scholar
     

  • Cannon, J. P., Lee, T. A., Bolanos, J. T. & Danziger, L. H. Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases. Eur. J. Clin. Microbiol. Infect. Dis. 24, 31–40 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Richardson, E. J. et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2, 1468–1478 (2018).

    Article 

    Google Scholar
     

  • Gordon, R. J. & Lowy, F. D. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin. Infect. Dis. 46 (Suppl. 5), S350–359 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Otto, M. Staphylococcus aureus toxins. Curr. Opin. Microbiol. 17, 32–37 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Powers, M. E. & Bubeck Wardenburg, J. Igniting the fire: Staphylococcus aureus virulence factors in the pathogenesis of sepsis. PLoS Pathog. 10, e1003871 (2014).

    Article 

    Google Scholar
     

  • Healy, C. M., Baker, C. J., Palazzi, D. L., Campbell, J. R. & Edwards, M. S. Distinguishing true coagulase-negative Staphylococcus infections from contaminants in the neonatal intensive care unit. J. Perinatol. 33, 52–58 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Michels, R., Last, K., Becker, S. L. & Papan, C. Update on coagulase-negative staphylococci–what the clinician should know. Microorganisms 9, 830 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Marchant, E. A., Boyce, G. K., Sadarangani, M. & Lavoie, P. M. Neonatal sepsis due to coagulase-negative staphylococci. Clin. Dev. Immunol. 2013, 586076 (2013).

    Article 

    Google Scholar
     

  • Zhen, X., Lundborg, C. S., Sun, X., Hu, X. & Dong, H. Economic burden of antibiotic resistance in ESKAPE organisms: a systematic review. Antimicrob. Resist. Infect. Control 8, 137 (2019).

    Article 

    Google Scholar
     

  • Kamal, S. M., Simpson, D. J., Wang, Z., Ganzle, M. & Romling, U. Horizontal transmission of stress resistance genes shape the ecology of beta- and gamma-proteobacteria. Front. Microbiol. 12, 696522 (2021).

    Article 

    Google Scholar
     

  • Kramer, A., Schwebke, I. & Kampf, G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 6, 130 (2006).

    Article 

    Google Scholar
     

  • Neely, A. N. & Maley, M. P. Survival of enterococci and staphylococci on hospital fabrics and plastic. J. Clin. Microbiol. 38, 724–726 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Bizzarro, M. J. et al. Neonatal sepsis 2004–2013: the rise and fall of coagulase-negative staphylococci. J. Pediatr. 166, 1193–1199 (2015).

    Article 

    Google Scholar
     

  • Dong, Y., Speer, C. P. & Glaser, K. Beyond sepsis: Staphylococcus epidermidis is an underestimated but significant contributor to neonatal morbidity. Virulence 9, 621–633 (2018).

    Article 

    Google Scholar
     

  • Glaser, M. A., Hughes, L. M., Jnah, A. & Newberry, D. Neonatal sepsis: a review of pathophysiology and current management strategies. Adv. Neonatal Care 21, 49–60 (2021).

    Article 

    Google Scholar
     

  • Nan, C. et al. Maternal group B Streptococcus-related stillbirth: a systematic review. BJOG 122, 1437–1445 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Vazquez-Boland, J. A., Krypotou, E. & Scortti, M. Listeria placental infection. mBio 8, e00949–17 (2017).

    Article 

    Google Scholar
     

  • DiGiulio, D. B. et al. Microbial invasion of the amniotic cavity in preeclampsia as assessed by cultivation and sequence-based methods. J. Perinat. Med. 38, 503–513 (2010).

    Article 
    CAS 

    Google Scholar
     

  • DiGiulio, D. B. et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 3, e3056 (2008). Sequencing study of amniotic fluid of 166 women in preterm labour with PCR and culture that showed near-complete positive correlation of bacterial detection with neonatal morbidity and mortality.

    Article 
    ADS 

    Google Scholar
     

  • DiGiulio, D. B. et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am. J. Reprod. Immunol. 64, 38–57 (2010).


    Google Scholar
     

  • DiGiulio, D. B. et al. Microbial invasion of the amniotic cavity in pregnancies with small-for-gestational-age fetuses. J. Perinat. Med. 38, 495–502 (2010).

    Article 

    Google Scholar
     

  • Enders, G., Daiminger, A., Bader, U., Exler, S. & Enders, M. Intrauterine transmission and clinical outcome of 248 pregnancies with primary cytomegalovirus infection in relation to gestational age. J. Clin. Virol. 52, 244–246 (2011).

    Article 

    Google Scholar
     

  • Luckey, T. D. Germfree Life and Gnotobiology (Academic Press, 1963).

  • Rasmussen, S. A., Jamieson, D. J., Honein, M. A. & Petersen, L. R. Zika virus and birth defects–reviewing the evidence for causality. N. Engl. J. Med. 374, 1981–1987 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Falk, P. G., Hooper, L. V., Midtvedt, T. & Gordon, J. I. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev. 62, 1157–1170 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Gordon, H. A. & Pesti, L. The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol. Rev. 35, 390–429 (1971).

    Article 
    CAS 

    Google Scholar
     

  • Hooper, L. V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291, 881–884 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wostman, B. S. Germfree and Gnotobiotic Animal Models. Background and Applications (CRC Press, 1996).

  • Arvidsson, C., Hallen, A. & Backhed, F. Generating and analyzing germ-free mice. Curr. Protoc. Mouse Biol. 2, 307–316 (2012).


    Google Scholar
     

  • Carter, P. B., Norin, E. & Swennes, A. G. Gnotobiotics and the microbiome. In The Laboratory Rat 3rd edn (eds Suckow, M. A. et al.) Ch. 21, 827–848 (2020).

  • Qv, L. et al. Methods for establishment and maintenance of germ-free rat models. Front. Microbiol. 11, 1148 (2020).

    Article 

    Google Scholar
     

  • Schoeb, T. R. & Eaton, K. A. Gnotobiotics (Academic Press, 2017).

  • Jervis-Bardy, J. et al. Deriving accurate microbiota profiles from human samples with low bacterial content through post-sequencing processing of Illumina MiSeq data. Microbiome 3, 19 (2015).

    Article 

    Google Scholar
     

  • Saffarian, A. et al. Crypt- and mucosa-associated core microbiotas in humans and their alteration in colon cancer patients. mBio 10, e01315-19 (2019).

    Article 

    Google Scholar
     

  • Jorissen, J. et al. Case–control microbiome study of chronic otitis media with effusion in children points at Streptococcus salivarius as a pathobiont-inhibiting species. mSystems 6, e00056-21 (2021).

    Article 

    Google Scholar
     

  • Salzberg, S. Does the placenta have a bacterial microbiome? Forbes (1 June 2020); https://www.forbes.com/sites/stevensalzberg/2020/06/01/does-the-placenta-have-a-bacterial-microbiome/?sh=7ae092ea250b.

  • Jost, T., Lacroix, C., Braegger, C. & Chassard, C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br. J. Nutr. 110, 1253–1262 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Treven, P. et al. Evaluation of human milk microbiota by 16S rRNA gene next-generation sequencing (NGS) and cultivation/MALDI-TOF mass spectrometry identification. Front. Microbiol. 10, 2612 (2019).

    Article 

    Google Scholar
     

  • Bihl, S. et al. When to suspect contamination rather than colonization—lessons from a putative fetal sheep microbiome. Gut Microbes 14, 2005751 (2022).

    Article 

    Google Scholar
     

  • Kennedy, K. M. et al. Over-celling fetal microbial exposure. Cell 184, 5839–5841 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 27, 105–117 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Source link