May 4, 2024
Spatiotemporal imaging of charge transfer in photocatalyst particles – Nature

Spatiotemporal imaging of charge transfer in photocatalyst particles – Nature

  • Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewis, N. S. Developing a scalable artificial photosynthesis technology through nanomaterials by design. Nat. Nanotechnol. 11, 1010–1019 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hisatomi, T. & Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2, 387–399 (2019).

    CAS 

    Google Scholar
     

  • Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, D. et al. Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO2. Nat. Catal. 1, 291–299 (2018).

    CAS 

    Google Scholar
     

  • Corby, S., Rao, R. R., Steier, L. & Durrant, J. R. The kinetics of metal oxide photoanodes from charge generation to catalysis. Nat. Rev. Mater. 6, 1136–1155 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Esposito, D. V. et al. Methods of photoelectrode characterization with high spatial and temporal resolution. Energy Environ. Sci. 8, 2863–2885 (2015).

    CAS 

    Google Scholar
     

  • Delor, M., Weaver, H. L., Yu, Q. & Ginsberg, N. S. Imaging material functionality through three-dimensional nanoscale tracking of energy flow. Nat. Mater. 19, 56–62 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sambur, J. B. et al. Sub-particle reaction and photocurrent mapping to optimize catalyst-modified photoanodes. Nature 530, 77–80 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, R. et al. Charge separation via asymmetric illumination in photocatalytic Cu2O particles. Nat. Energy 3, 655–663 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Chen, R., Fan, F., Dittrich, T. & Li, C. Imaging photogenerated charge carriers on surfaces and interfaces of photocatalysts with surface photovoltage microscopy. Chem. Soc. Rev. 47, 8238–8262 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Semiconductor interfacial carrier dynamics via photoinduced electric fields. Science 350, 1061–1065 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Selim, S. et al. Impact of oxygen vacancy occupancy on charge carrier dynamics in BiVO4 photoanodes. J. Am. Chem. Soc. 141, 18791–18798 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Wu, Y. A. et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat. Energy 4, 957–968 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Mao, X. & Chen, P. Inter-facet junction effects on particulate photoelectrodes. Nat. Mater. 21, 331–337 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Selcuk, S. & Selloni, A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat. Mater. 15, 1107–1112 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scanlon, D. O., Morgan, B. J., Watson, G. W. & Walsh, A. Acceptor levels in p-type Cu2O: rationalizing theory and experiment. Phys. Rev. Lett. 103, 096405 (2009).

    ADS 
    PubMed 

    Google Scholar
     

  • Chen, R. et al. Giant defect-induced effects on nanoscale charge separation in semiconductor photocatalysts. Nano Lett. 19, 426–432 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scanlon, D. O. & Watson, G. W. Uncovering the complex behavior of hydrogen in Cu2O. Phys. Rev. Lett. 106, 186403 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • Man, M. K. et al. Imaging the motion of electrons across semiconductor heterojunctions. Nat. Nanotechnol. 12, 36–40 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, J. S., Kim, S., Xie, Z. & Walsh, A. Point defect engineering in thin-film solar cells. Nat. Rev. Mater. 3, 194–210 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Sadasivam, S., Chan, M. K. Y. & Darancet, P. Theory of thermal relaxation of electrons in semiconductors. Phys. Rev. Lett. 119, 136602 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • Tanimura, H., Tanimura, K. & Kanasaki, J. I. Ultrafast relaxation of photoinjected nonthermal electrons in the Γ valley of GaAs studied by time- and angle-resolved photoemission spectroscopy. Phys. Rev. B 104, 245201 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Wittenbecher, L. et al. Unraveling the ultrafast hot electron dynamics in semiconductor nanowires. ACS Nano 15, 1133–1144 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Borgwardt, M. et al. Femtosecond time-resolved two-photon photoemission studies of ultrafast carrier relaxation in Cu2O photoelectrodes. Nat. Commun. 10, 2106 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sung, J. et al. Long-range ballistic propagation of carriers in methylammonium lead iodide perovskite thin films. Nat. Phys. 16, 171–176 (2019).


    Google Scholar
     

  • Guo, Z. et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 356, 59–62 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Najafi, E., Scarborough, T. D., Tang, J. & Zewail, A. Four-dimensional imaging of carrier interface dynamics in p–n junctions. Science 347, 164–167 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, J. et al. Visualizing the nano cocatalyst aligned electric fields on single photocatalyst particles. Nano Lett. 17, 6735–6741 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Siegfried, M. J. & Choi, K. S. Electrochemical crystallization of cuprous oxide with systematic shape evolution. Adv. Mater. 16, 1743–1746 (2004).

    CAS 

    Google Scholar
     

  • Barbet, S. et al. Cross-talk artefacts in Kelvin probe force microscopy imaging: a comprehensive study. J. Appl. Phys. 115, 144313 (2014).

    ADS 

    Google Scholar
     

  • Kronik, L. & Shapira, Y. Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 37, 1–206 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • Chen, R., Fan, F. & Li, C. Unraveling charge‐separation mechanisms in photocatalyst particles by spatially resolved surface photovoltage techniques. Angew. Chem. Int. Ed. 61, e202117567 (2022).

    CAS 

    Google Scholar
     

  • Fukumoto, K. et al. Femtosecond time-resolved photoemission electron microscopy for spatiotemporal imaging of photogenerated carrier dynamics in semiconductors. Rev. Sci. Instrum. 85, 083705 (2014).

    ADS 
    PubMed 

    Google Scholar
     

  • Da̧browski, M., Dai, Y. & Petek, H. Ultrafast photoemission electron microscopy: imaging plasmons in space and time. Chem. Rev. 120, 6247–6287 (2020).


    Google Scholar
     

  • Malerba, C. et al. Absorption coefficient of bulk and thin film Cu2O. Sol. Energy Mater. Sol. Cells 95, 2848–2854 (2011).

    CAS 

    Google Scholar
     

  • Grad, L., Novotny, Z., Hengsberger, M. & Osterwalder, J. Influence of surface defect density on the ultrafast hot carrier relaxation and transport in Cu2O photoelectrodes. Sci Rep. 10, 10686 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gloystein, A., Nilius, N., Goniakowski, J. & Noguera, C. Nanopyramidal reconstruction of Cu2O (111): a long-standing surface puzzle solved by STM and DFT. J. Phys. Chem. C 124, 26937–26943 (2020).

    CAS 

    Google Scholar
     

  • Ricca, C. et al. Importance of surface oxygen vacancies for ultrafast hot carrier relaxation and transport in Cu2O. Phys. Rev. Res. 3, 043219 (2021).

    CAS 

    Google Scholar
     

  • Bendavid, L. I. & Carter, E. A. First-principles predictions of the structure, stability, and photocatalytic potential of Cu2O surfaces. J. Phys. Chem. B 117, 15750–15760 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Dittrich, T., Fengler, S. & Franke, M. Transient surface photovoltage measurement over 12 orders of magnitude in time. Rev. Sci. Instrum. 88, 053904 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • Dittrich, T., Bonisch, S., Zabel, P. & Dube, S. High precision differential measurement of surface photovoltage transients on ultrathin CdS layers. Rev. Sci. Instrum. 79, 113903 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & J. Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hydrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, S. B. & Northrup, J. E. Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys. Rev. Lett. 67, 2339–2342 (1991).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • de Jongh, P. E. & Vanmaekelbergh, D. Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles. Phys. Rev. Lett. 77, 3427–3430 (1996).

    ADS 
    PubMed 

    Google Scholar
     

  • Lee, Y. S. et al. Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering. Appl. Phys. Lett. 98, 192115 (2011).

    ADS 

    Google Scholar
     

  • Liao, B. et al. Photo-excited hot carrier dynamics in hydrogenated amorphous silicon imaged by 4D electron microscopy. Nat. Nanotechnol. 12, 871–876 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dekorsy, T., Pfeifer, T., Kutt, W. & Kurz, H. Subpicosecond carrier transport in GaAs surface-space-charge fields. Phys. Rev. B 47, 3842–3849 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Rossi, F. & Kuhn, T. Theory of ultrafast phenomena in photoexcited semiconductors. Rev. Mod. Phys. 74, 895–950 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Toe, C. Y. et al. Photocorrosion of cuprous oxide in hydrogen production: rationalising self-oxidation or self-reduction. Angew. Chem. Int. Ed. 57, 13613–13617 (2018).

    CAS 

    Google Scholar
     

  • Poulston, S., Parlett, P. M., Stone, P. & Bowker, M. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf. Interface Anal. 24, 811–820 (1996).

    CAS 

    Google Scholar
     

  • Sander, T. et al. Correlation of intrinsic point defects and the Raman modes of cuprous oxide. Phys. Rev. B 90, 045203 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Petroff, Y., Yu, P. Y. & Shen, Y. R. Study of photoluminescence in Cu2O. Phys. Rev. B 12, 2488–2495 (1975).

    ADS 
    CAS 

    Google Scholar
     

  • Önsten, A. et al. Role of defects in surface chemistry on Cu2O(111). J. Phys. Chem. C 117, 19357–19364 (2013).


    Google Scholar
     

  • Soldemo, M. et al. The surface structure of Cu2O(100). J. Phys. Chem. C 120, 4373–4381 (2016).

    CAS 

    Google Scholar
     

  • Grioni, M. et al. Unoccupied electronic structure and core-hole effects in the X-ray-absorption spectra of Cu2O. Phys. Rev. B 45, 3309–3318 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • de Jongh, P. E., Vanmaekelbergh, D. & Kelly, J. J. Photoelectrochemistry of electrodeposited Cu2O. J. Electrochem. Soc. 147, 486–489 (2000).


    Google Scholar
     

  • Scanlon, D. O. & Watson, G. W. Undoped n-type Cu2O: fact or fiction? J. Phys. Chem. Lett. 1, 2582–2585 (2010).

    CAS 

    Google Scholar
     

  • Source link