May 9, 2024
Strongly correlated electron–photon systems – Nature

Strongly correlated electron–photon systems – Nature

  • Hwang, H. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Drozdov, A. P. et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lodhal, P., Mahmodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    ADS 
    MathSciNet 
    Article 
    CAS 

    Google Scholar
     

  • Berry, J. et al. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011). This work demonstrates targeted optical suppression of stripe order to enhance superconductivity.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Disa, A. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Shin, D. et al. Phonon-driven spin-Floquet magneto-valleytronics in MoS2. Nat. Commun. 9, 638 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Nova, T. F., Disa, A. S., Fechnerand, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019). This paper experimentally demonstrates how an electromagnetic field can induce ferroelectric order at high temperature in a quantum paraelectric material.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li, X. et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019). This paper experimentally demonstrates how an electromagnetic field can induce ferroelectric order at high temperature in a quantum paraelectric material.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, Y. H. et al. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). Experimental demonstration of Floquet band-stucture engineering in a solid.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McIver, J. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020). Transport experiment demonstrating a Floquet topological insulator.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ebbesen, T. W. Hybrid light–matter states in a molecular and material science perspective. Acc. Chem. Res. 49, 2403–2412 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Schlawin, F., Cavalleri, A. & Jaksch, D. Cavity-mediated electron–photon superconductivity. Phys. Rev. Lett. 122, 133602 (2019). Early theorerical proposal for cavity-mediated superconductivity.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Curtis, J. B., Raines, Z. M., Allocca, A. A., Hafezi, M. & Galitski, V. M. Cavity quantum Eliashberg enhancement of superconductivity. Phys. Rev. Lett. 122, 167002 (2018). Early theoretical proposal for cavity-mediated superconductivity.

    ADS 
    Article 

    Google Scholar
     

  • Hübener, H. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. 20, 438–442 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Scalari, G. et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science 335, 1323–1326 (2012). Demonstration of strong light–matter coupling in a two-dimensional electron system.

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, Q. et al. Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons. Nat. Phys 12, 1005–1011 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Li, X. et al. Vacuum Bloch–Siegert shift in Landau polaritons with ultra-high cooperativity. Nat. Photon. 12, 324–329 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Claassen, M., Kennes, D. M., Zingl, M., Sentef, M. A. & Rubio, A. Universal optical control of chiral superconductors and Majorana modes. Nat. Phys. 15, 766–770 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Latini, S. et al. Cavity control of excitons in two-dimensional materials. Nano Lett. 19, 3473–3479 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sentef, M. A., Ruggenthaler, M. & Rubio, A. Cavity quantum-electrodynamical polaritonically enhanced electron–phonon coupling and its influence on superconductivity. Sci. Adv. 4, eaau6969 (2018). Early theoretical proposal for cavity-mediated superconductivity.

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thomas, A. et al. Exploring superconductivity under strong coupling with the vacuum electromagnetic field. Preprint at https://arxiv.org/abs/1911.01459 (2019).

  • Ashida, Y. et al. Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition. Phys. Rev. 10, 041027 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Boyd, R. W. Nonlinear Optics (Academic Press, 2003).

  • Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2006).

  • Birnbaum, K. M. et al. Theory of photon blockade by an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51–55 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar
     

  • Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2021).

    Article 

    Google Scholar
     

  • Basov, D. N., Fogler, F. N. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Oka, T. & Aoki, H. Floquet theory of photo-induced topological phase transitions: application to graphene. Phys. Rev. B 79, 081406(R) (2009). Early theoretical proposal for the realization of Floquet topological insulators in graphene.

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Lindner, N., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011). Early theoretical proposal for the realization of Floquet topological insulators in semi-conductors.

    CAS 
    Article 

    Google Scholar
     

  • Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moessner, R. & Sondhi, S. L. Equilibration and order in quantum Floquet matter. Nat. Phys. 13, 424–428 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Sato, S. A. et al. Microscopic theory for the light-induced anomalous Hall effect in graphene. Phys. Rev. B 99, 214302 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Nuske, M. et al. Floquet dynamics in light driven solids. Phys. Rev. Res. 2, 043408 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Seetharam, K. I. et al. Controlled population of Floquet–Bloch states via coupling to Bose and Fermi baths. Phys. Rev. X 5, 041050 (2015).


    Google Scholar
     

  • Dehghani, H., Oka, T. & Mitra, A. Out-of-equilibrium electrons and the Hall conductance of a Floquet topological insulator. Phys. Rev. B 91, 155422 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Rudner, M. S. et al. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 031005 (2013).

    CAS 

    Google Scholar
     

  • Mukherjee, S. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice. Nat. Commun. 8, 13918 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Berdanier, W. et al. Floquet quantum criticality. Proc. Natl Acad. Sci. USA 115, 9491–9496 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen, X. et al. Symmetry protected topological orders and the group cohomology of their symmetry group. Phys. Rev. B 87, 155114 (2013).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Vishwanath, A., Potter, A. C. & Morimoto, T. Classification of interacting topological Floquet phases in one dimension. Phys. Rev. X 6, 041001 (2016).


    Google Scholar
     

  • Khemani, V. et al. Phase structure of driven quantum systems. Phys. Rev. Lett. 116, 250401 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mentnik, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in Mott insulators. Nat. Commun. 6, 6708 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Claassen, M., Yang, H. C., Moritz, B. & Devereaux, T. P. Dynamical time-reversal symmetry breaking and photo-induced chiral spin liquids in frustrated Mott insulators. Nat. Commun. 8, 1192 (2017). A theoretical proposal to exploit optically induced dynamical symmetry breaking to engineer quantum spin liquids.

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Ghazaryan, A. et al. Light-induced fractional quantum Hall phases in graphene. Phys. Rev. Lett. 119, 247403 (2017). A theoretical proposal for engineering effective interaction in driven fractional quantum Hall systems.

    ADS 
    PubMed 
    Article 

    Google Scholar
     

  • Cian, Z. P. et al. Engineering quantum Hall phases in synthetic bilayer graphene system. Phys. Rev. B 102, 085430 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Lee, C. H. et al. Floquet mechanism for non-Abelian fractional quantum Hall states. Phys. Rev. Lett. 121, 237401 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Dienst, A. et al. Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor. Nat. Photon. 5, 485–488 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Rajasekaran, S. et al. Parametric amplification of a superconducting plasma wave. Nat. Phys. 12, 1012–1016 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Rajasekaran, S. et al. Probing optically silent superfluid stripes in cuprates. Science 369, 575–579 (2018).

    ADS 
    MathSciNet 
    MATH 
    Article 
    CAS 

    Google Scholar
     

  • Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 354–357 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Kubacka, T. et al. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343, 1333–1336 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sie, E. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Foerst, M. et al. Nonlinear phononics as a new ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tobey, R. I. et al. Ultrafast electronic phase transition in La1/2Sr3/2MnO4 by coherent vibrational excitation: evidence for nonthermal melting of orbital order. Phys. Rev. Lett. 101, 197404 (2008).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nova, T. et al. An effective magnetic field from optically driven phonons. Nat. Phys. 13, 132–136 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Disa, A. S. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wyatt, A. F. G. et al. Microwave-enhanced critical supercurrents in constricted tin films. Phys. Rev. Lett. 16, 1166–1169 (1966).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Dayem, A. H. & Wiegand, J. J. Behavior of thin-film superconducting bridges in a microwave field. Phys. Rev. 155, 419–428 (1967).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Churilov, G. E. et al. Non-linear effects in thin superconducting tin films at microwave frequencies. JETP Lett. 6, 222–224 (1967).

  • Eliashberg, G. M. Film superconductivity stimulated by a high-frequency field. JETP Lett. 11, 114–116 (1970).

    ADS 

    Google Scholar
     

  • Chang, J.-J. & Scalapino, D. Nonequilibrium superconductivity. J. Low Temp. Phys. 31, 1–32 (1978).

  • Nicoletti, D. et al. Optically-induced superconductivity in striped La2−xBaxCuO4 by polarization-selective excitation in the near infrared. Phys. Rev. B 90, 100503(R) (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Cremin, K. A. et al. Photoenhanced metastable c-axis electrodynamics in stripe-ordered cuprate La1.885Ba0.115CuO4. Proc. Natl Acad. Sci. USA 116, 19875–19879 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Budden, M. et al. Evidence for metastable photo-induced superconductivity in K3C60. Nat. Phys. 17, 611–618 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Buzzi, M. et al. Photomolecular high-temperature superconductivity. Phys. Rev. X 10, 031028 (2020).

    CAS 

    Google Scholar
     

  • Raines, Z. M. et al. Enhancement of superconductivity via periodic modulation in a three-dimensional model of cuprates. Phys. Rev. B 91, 184506 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Babadi, M. et al. Theory of parametrically amplified electron–phonon superconductivity. Phys. Rev. B 96, 014512 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Denny, S. J. et al. Proposed parametric cooling of bilayer cuprate superconductors by terahertz excitation. Phys. Rev. Lett. 114, 137001 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kennes, D. M. et al. Transient superconductivity from electronic squeezing of optically pumped phonons. Nat. Phys. 13, 479–483 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Dehghani, H. et al. Optical enhancement of superconductivity via targeted destruction of charge density waves. Phys. Rev. B 101, 224506 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Haroche, S. & Raimond, J.-M. Exploring the Quantum (Oxford Univ. Press, 2006).

  • Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lai, Y. & Haus, H. A. Quantum theory of solitons in optical fibers. I. Time-dependent Hartree approximation. Phys. Rev. A 40, 844–853 (1989).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Firstenberg, O. et al. Attractive photons in a quantum nonlinear medium. Nature 502, 71–75 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    ADS 
    Article 

    Google Scholar
     

  • Latini, S. et al. Phonoritons as hybridized exciton–photon–phonon excitations in a monolayer h-BN optical cavity. Phys. Rev. Lett. 126, 227401 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Andolina, G. M. et al. Cavity quantum electrodynamics of strongly correlated electron systems: a no-go theorem for photon condensation. Phys. Rev. B 100, 121109(R) (2019).

    ADS 
    Article 

    Google Scholar
     

  • Weisbuch, C. et al. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Deng, H. et al. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Wouters, M. & Carusotto, I. Superfluidity and critical velocity in non-equilibrium Bose Einstein condensates. Phys. Rev. Lett. 105, 020602 (2010).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Van Regemortel, M. & Wouters, M. Negative drag in non-equilibrium polariton quantum fluids. Phys. Rev. B 89, 085303 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Juggins, R. T. et al. Coherently driven microcavity poalritons and the question of superfluididity. Nat. Commun. 9, 4062 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Orgiu, E. et al. Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater 14, 1123–1129 (2015).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Muñoz-Matutano, G. et al. Emergence of quantum correlations from interacting fibre-cavity polaritons. Nat. Mater. 18, 213–218 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Delteil, A. et al. Towards polariton blockade of confined exciton–polaritons. Nat. Mater. 18, 219–222 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cristofolini, P. et al. Coupling quantum tunneling with cavity photons. Science 336, 704–707 (2012).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ravets, S. et al. Polaron polaritons in the integer and fractional quantum Hall regimes. Phys. Rev. Lett. 120, 057401 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Knüppel, P. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019). Experimental demonstration of nonlinear optical effects in fractional quantum Hall systems.

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • Amo, A. & Bloch, J. Exciton–polaritons in lattices: a non-linear photonic simulator. C. R. Phys. 17, 934–945 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Schneider, C. et al. Exciton–polariton trapping and potential landscape engineering. Rep. Prog. Phys. 80, 016503 (2016).

    ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11, 651–656 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Harai, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mittal, S., Goldschmidt, E. & Hafezi, M. A topological source of quantum light. Nature 561, 502–506 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carusotto, I. et al. Fermionized photons in an array of driven dissipative nonlinear cavities. Phys. Rev. Lett. 103, 033601 (2009).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kapit, E., Hafezi, M. & Simon, S. H. Induced self-stabilization in fractional quantum Hall states of light. Phys. Rev. X 4, 031039 (2014).


    Google Scholar
     

  • Rota, R. et al. Quantum critical regime in a quadratically driven nonlinear photonic lattice. Phys. Rev. Lett. 122, 110405 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lebreuilly, J. et al. Stabilizing strongly correlated photon fluids with non-Markovian reservoirs. Phys. Rev. A 96, 033828 (2017).

    ADS 
    Article 

    Google Scholar
     

  • Latini, S. et al. The ferroelectric photo-groundstate of SrTiO3: cavity materials engineering. Proc. Natl Acad. Sci. USA 118, e2105618118 (2021). Theoretical proposal for a cavity modification of the ground state of a material.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Graß, T. et al. Optical excitations in compressible and incompressible two-dimensional electron liquids. Phys. Rev. B 101, 155127 (2020).

    ADS 
    Article 

    Google Scholar
     

  • Graß, T. et al. Optical control over bulk excitations in fractional quantum Hall systems. Phys. Rev. B 98, 155124 (2018).

    ADS 
    Article 

    Google Scholar
     

  • Wang, Z., Shan, J. & Mak, K. F. Valley- and spin-polarized Landau levels in monolayer WSe2. Nat. Nanotechnol. 12, 144–149 (2017).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kennes, D. M. et al. Moiré heterostructures as a condensed matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Rudner, M. S. & Song, J. Self induced Berry flux and spontaneous non-equilibrium magnetism. Nat. Phys. 15, 1017–1021 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Klapwijk, T. M. & de Visser, P. J. The discovery, disappearance and re-emergence of radiation-stimulated superconductivity. Ann. Phys. 417, 168104 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

  • Source link