May 6, 2024
Structure and thiazide inhibition mechanism of the human Na–Cl cotransporter – Nature

Structure and thiazide inhibition mechanism of the human Na–Cl cotransporter – Nature

  • Moes, A. D., van der Lubbe, N., Zietse, R., Loffing, J. & Hoorn, E. J. The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation. Pflugers Arch. 466, 107–118 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ellison, D. H., Velazquez, H. & Wright, F. S. Thiazide-sensitive sodium chloride cotransport in early distal tubule. Am. J. Physiol. 253, F546–F554 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • Gamba, G. et al. Primary structure and functional expression of a cDNA encoding the thiazide-sensitive, electroneutral sodium-chloride cotransporter. Proc. Natl Acad. Sci. USA 90, 2749–2753 (1993).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simon, D. B. et al. Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na–Cl cotransporter. Nat. Genet. 12, 24–30 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Freis, E. D., Wanko, A., Wilson, I. M. & Parrish, A. E. Treatment of essential hypertension with chlorothiazide (diuril); its use alone and combined with other antihypertensive agents. J. Am. Med. Assoc. 166, 137–140 (1958).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castaneda-Bueno, M., Ellison, D. H. & Gamba, G. Molecular mechanisms for the modulation of blood pressure and potassium homeostasis by the distal convoluted tubule. EMBO Mol. Med. 14, e14273 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Subramanya, A. R. in Studies of Epithelial Transporters and Ion Channels (eds Hamilton, K. L. & Devor, D. C.) 57–92 (Springer, 2020).

  • NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 398, 957–980 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Zhou, B., Perel, P., Mensah, G. A. & Ezzati, M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat. Rev. Cardiol. 18, 785–802 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wadei, H. M. & Textor, S. C. The role of the kidney in regulating arterial blood pressure. Nat. Rev. Nephrol. 8, 602–609 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lalioti, M. D. et al. Wnk4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule. Nat. Genet. 38, 1124–1132 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ernst, M. E. & Moser, M. Use of diuretics in patients with hypertension. N. Engl. J. Med. 361, 2153–2164 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sica, D. A. Metolazone and its role in edema management. Congest. Heart Fail. 9, 100–105 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jentzer, J. C., DeWald, T. A. & Hernandez, A. F. Combination of loop diuretics with thiazide-type diuretics in heart failure. J. Am. Coll. Cardiol. 56, 1527–1534 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gamba, G. Molecular physiology and pathophysiology of electroneutral cation–chloride cotransporters. Physiol. Rev. 85, 423–493 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chew, T. A. et al. Structure and mechanism of the cation–chloride cotransporter NKCC1. Nature 572, 488–492 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, X., Wang, Q. & Cao, E. Structure of the human cation–chloride cotransporter NKCC1 determined by single-particle electron cryo-microscopy. Nat. Commun. 11, 1016 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, S. et al. The structural basis of function and regulation of neuronal cotransporters NKCC1 and KCC2. Commun. Biol. 4, 226 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. Cryo-EM structures of the human cation–chloride cotransporter KCC1. Science 366, 505–508 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Reid, M. S., Kern, D. M. & Brohawn, S. G. Cryo-EM structure of the potassium–chloride cotransporter KCC4 in lipid nanodiscs. eLife 9, e52505 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zimanyi, C. M. et al. Structure of the regulatory cytosolic domain of a eukaryotic potassium–chloride cotransporter. Structure 28, 1051–1060 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Y. et al. Structures and an activation mechanism of human potassium–chloride cotransporters. Sci. Adv. 6, eabc5883 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chi, X. et al. Cryo-EM structures of the full-length human KCC2 and KCC3 cation–chloride cotransporters. Cell Res. 31, 482–484 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chi, G. et al. Phospho-regulation, nucleotide binding and ion access control in potassium–chloride cotransporters. EMBO J. 40, e107294 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rojas-Vega, L. & Gamba, G. Mini-review: regulation of the renal NaCl cotransporter by hormones. Am. J. Physiol. Renal Physiol. 310, F10–F14 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Scriabine, A. et al. Pharmacological studies with polythiazide, a new diuretic and antihypertensive agent. Proc. Soc. Exp. Biol. Med. 107, 864–872 (1961).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pacheco-Alvarez, D. et al. The Na+:Cl cotransporter is activated and phosphorylated at the amino-terminal domain upon intracellular chloride depletion. J. Biol. Chem. 281, 28755–28763 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenbaek, L. L., Kortenoeven, M. L., Aroankins, T. S. & Fenton, R. A. Phosphorylation decreases ubiquitylation of the thiazide-sensitive cotransporter NCC and subsequent clathrin-mediated endocytosis. J. Biol. Chem. 289, 13347–13361 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valdez-Flores, M. A. et al. Functionomics of NCC mutations in Gitelman syndrome using a novel mammalian cell-based activity assay. Am. J. Physiol. Renal Physiol. 311, F1159–F1167 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tovar-Palacio, C. et al. Ion and diuretic specificity of chimeric proteins between apical Na+–K+–2Cl and Na+–Cl cotransporters. Am. J. Physiol. Renal Physiol. 287, F570–F577 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Jong, J. C. et al. The structural unit of the thiazide-sensitive NaCl cotransporter is a homodimer. J. Biol. Chem. 278, 24302–24307 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Chew, T. A., Zhang, J. & Feng, L. High-resolution views and transport mechanisms of the NKCC1 and KCC transporters. J. Mol. Biol. 433, 167056 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Portioli, C., Ruiz Munevar, M. J., De Vivo, M. & Cancedda, L. Cation-coupled chloride cotransporters: chemical insights and disease implications. Trends Chem. 3, 832–849 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Warmuth, S., Zimmermann, I. & Dutzler, R. X-ray structure of the C-terminal domain of a prokaryotic cation–chloride cotransporter. Structure 17, 538–546 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. Structural basis for inhibition of the cation–chloride cotransporter NKCC1 by the diuretic drug bumetanide. Nat. Commun. 13, 2747 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yasujima, M. Clinical significance of thiazide-sensitive Na–Cl cotransporter gene by mutational analysis. Rinsho Byori 55, 338–343 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Richardson, C. et al. Activation of the thiazide-sensitive Na+–Cl cotransporter by the WNK-regulated kinases SPAK and OSR1. J. Cell Sci. 121, 675–684 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Krishnamurthy, H., Piscitelli, C. L. & Gouaux, E. Unlocking the molecular secrets of sodium-coupled transporters. Nature 459, 347–355 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Drew, D. & Boudker, O. Shared molecular mechanisms of membrane transporters. Annu. Rev. Biochem. 85, 543–572 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wahlgren, W. Y. et al. Substrate-bound outward-open structure of a Na+-coupled sialic acid symporter reveals a new Na+ site. Nat. Commun. 9, 1753 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sprague, J. M. Some results of molecular modifications of diuretics. Adv. Chem. 45, 87–101 (1964).

    Article 

    Google Scholar
     

  • Beaumont, K., Vaughn, D. A. & Fanestil, D. D. Thiazide diuretic drug receptors in rat kidney: identification with [3H]metolazone. Proc. Natl Acad. Sci. USA 85, 2311–2314 (1988).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tran, J. M., Farrell, M. A. & Fanestil, D. D. Effect of ions on binding of the thiazide-type diuretic metolazone to kidney membrane. Am. J. Physiol. 258, F908–F915 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Monroy, A., Plata, C., Hebert, S. C. & Gamba, G. Characterization of the thiazide-sensitive Na+–Cl cotransporter: a new model for ions and diuretics interaction. Am. J. Physiol. Renal Physiol. 279, F161–F169 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. et al. Structure of the human cation-chloride cotransport KCC1 in an outward-open state. Proc. Natl Acad. Sci. USA 119, e2109083119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman, J. A., Green, E. M. & Gouaux, E. X-ray structures and mechanism of the human serotonin transporter. Nature 532, 334–339 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Niu, Y. et al. Structural basis of inhibition of the human SGLT2-MAP17 glucose transporter. Nature 601, 280–284 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Earley, L. E. & Orloff, J. Thiazide diuretics. Annu. Rev. Med. 15, 149–166 (1964).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamada, K. A. & Tang, C. M. Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents. J. Neurosci. 13, 3904–3915 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darman, R. B. & Forbush, B. A regulatory locus of phosphorylation in the N terminus of the Na–K–Cl cotransporter, NKCC1. J. Biol. Chem. 277, 37542–37550 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowarz, E., Loscher, D. & Marschalek, R. Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnol. J. 10, 647–653 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The PyMOL Molecular Graphics System v.2.0. (Schrödinger, 2017).

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera––a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Source link