April 26, 2024

The effect of rainfall changes on economic production – Nature

  • 1.

    Dell, M., Jones, B. F. & Olken, B. A. Temperature shocks and economic growth: evidence from the last half century. Am. Econ. J. Macroecon. 4, 66–95 (2012).

    Article 

    Google Scholar
     

  • 2.

    Burke, M., Hsiang, S. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Kalkuhl, M. & Wenz, L. The impact of climate conditions on economic production. Evidence from a global panel of regions. J. Environ. Econ. Manage. 103, 102360 (2020).

  • 4.

    Damania, R., Desbureaux, S. & Zaveri, E. Does rainfall matter for economic growth? Evidence from global sub-national data (1990–2014). J. Environ. Econ. Manage. 102, 102335 (2020).

  • 5.

    Holtermann, L. Precipitation anomalies, economic production, and the role of “first-nature” and “second-nature” geographies: a disaggregated analysis in high-income countries. Glob. Environ. Change 65, 102167 (2020).

  • 6.

    Kotz, M. et al. Day-to-day temperature variability reduces economic growth. Nat. Clim. Change 11, 319–325 (2021).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Barrios, S., Bertinelli, L. & Strobl, E. Trends in rainfall and economic growth in Africa: a neglected cause of the African growth tragedy. Rev. Econ. Stat. 92, 350–366 (2010).

    Article 

    Google Scholar
     

  • 8.

    Min, S. K. et al. Human contribution to more-intense precipitation extremes. Nature 470, 378–381 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 9.

    Madakumbura, G. D. et al. Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets. Nat. Commun. 12, 3944 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Fischer, E. & Knutti, R. Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Change 6, 986–991 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Marvel, K. & Bonfils, C. External influences on global precipitation. Proc. Natl Acad. Sci. USA 110, 19301–19306 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Chadwick, R. et al. Large rainfall changes consistently projected over substantial areas of tropical land. Nat. Clim. Change 6, 177–181 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Lehmann, J., Mempel, F. & Coumou, D. Increased occurrence of record-wet and record-dry months reflect changes in mean rainfall. Geophys. Res. Lett. 45, 13468–13476 (2018).

    ADS 

    Google Scholar
     

  • 14.

    Zhang, W. et al. Increasing precipitation variability on daily-to-multiyear time scales in a warming world. Sci. Adv. 7, eabf8021 (2021).

    Article 

    Google Scholar
     

  • 15.

    Feng, X., Porporato, A. & Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Change 3, 811–815 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 16.

    liang, X. Z. et al. Determining climate effects on US total agricultural productivity. Proc. Natl Acad. Sci. USA 114, E2285–E2292 (2017).

    Article 

    Google Scholar
     

  • 17.

    Damania, R. The economics of water scarcity and variability. Oxf. Rev. Econ. Policy 36, 24–44 (2020).

    Article 

    Google Scholar
     

  • 18.

    Desbureaux, S. & Rodella, A. S. Drought in the city: the economic impact of water scarcity in Latin American metropolitan areas. World Dev. 114, 13–27 (2019).

    Article 

    Google Scholar
     

  • 19.

    Hsiang, S. M., Burke, M. & Miguel, E. Quantifying the influence of climate on human conflict. Science https://doi.org/10.1126/science.1235367 (2013).

  • 20.

    Davenport, F. V., Burke, M. & Diffenbaugh, N. S. Contribution of historical precipitation change to US flood damages. Proc. Natl Acad. Sci. USA 118, e2017524118 (2021).

  • 21.

    Willner, S. N., Otto, S. N. C. & Levermann, A. Global economic response to river floods. Nat. Clim. Change 8, 594–598 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 22.

    Beck, H. E. et al. Daily evaluation of 26 precipitation datasets using stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci. 23, 207–224 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 23.

    Garrick, D. E. et al. Valuing water for sustainable development. Science 358, 1003–1005 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Ali, S. Climate change and economic growth in a rain-fed economy: How much does rainfall variability cost Ethiopia? SSRN https://doi.org/10.2139/ssrn.2018233 (2012).

  • 25.

    Sangkhaphan, S. & Shu, Y. The effect of rainfall on economic growth in Thailand: a blessing for poor provinces. Economies 8, 1–17 (2020).

  • 26.

    Loayza, N. V., Olaberría, E., Rigolini, J. & Christiaensen, L. Natural disasters and growth: going beyond the averages. World Dev. 40, 1317–1336 (2012).

    Article 

    Google Scholar
     

  • 27.

    Kirchene, H. et al. Long-term impacts of tropical cyclones and fluvial floods on economic growth—empirical evidence on transmission channels at different levels of development. World Dev. 144, 105475 (2021).

    Article 

    Google Scholar
     

  • 28.

    Moore, F. C. & Diaz, D. B. Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Change 5, 127–131 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Kikstra, J. S. et al. The social cost of carbon dioxide under climate–economy feedbacks and temperature variability. Environ. Res. Lett. 16, 094037 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 30.

    Hidalgo, C. A., Klinger, B., Barabási, A.-L. & Hausmann, R. The product space conditions the development of nations. Science 317, 482–487 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Beck, H. E. et al. MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. 21, 589–615 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Wenz, L., Kalkuhl, M. & Kotz, M. DOSE v.1. The MCC and PIK database of subnational economic output: documentation. Zenodo https://doi.org/10.5281/zenodo.4681306 (2021).

  • 34.

    Bador, M., Alexander, L. V., Contractor, S. & Roca, R. Diverse estimates of annual maxima daily precipitation in 22 state-of-the-art quasi-global land observation datasets. Environ. Res. Lett. 51, 035005 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Myhre, G. et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 9, 16063 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 36.

    Klein Goldewijk, K., Beusen, A., van Drecht, G. & de Vos, G. M. The HYDE 3.1 spatially explicit database of human induced land use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).

    Article 

    Google Scholar
     

  • 37.

    Swain, D. L. et al. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Change 8, 427–433 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Auffhammer, M., Hsiang, S. M., Schlenker, W. & Sobel, A. Using weather data and climate model output in economic analyses of climate change. Rev. Environ. Econ. Policy 7, 181–198 (2013).

    Article 

    Google Scholar
     

  • Source link