May 6, 2024
Traversable wormhole dynamics on a quantum processor – Nature

Traversable wormhole dynamics on a quantum processor – Nature

  • Maldacena, J. The large-N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Sachdev, S. & Ye, J. Gapless spin-fluid ground state in a random quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339–3342 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitaev, A. A simple model of quantum holography. In Proc. KITP: Entanglement in Strongly-Correlated Quantum Matter 12 (eds Grover, T. et al.) 26 (Univ. California, Santa Barbara, 2015).

  • Maldacena, J. & Stanford, D. Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 94, 106002 (2016).

    Article 
    MathSciNet 

    Google Scholar
     

  • Almheiri, A. & Polchinski, J. Models of AdS2 backreaction and holography. J. High Energy Phys. 11, 014 (2015).

    Article 
    MATH 

    Google Scholar
     

  • Gross, D. J. & Rosenhaus, V. The bulk dual of SYK: cubic couplings. J. High Energy Phys. 05, 092 (2017).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Maldacena, J. & Susskind, L. Cool horizons for entangled black holes. Fortschr. Phys. 61, 781–811 (2013).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Susskind, L. Dear qubitzers, GR=QM. Preprint at https://doi.org/10.48550/arXiv.1708.03040 (2017).

  • Gao, P. & Jafferis, D. L. A traversable wormhole teleportation protocol in the SYK model. J. High Energy Phys. 2021, 97 (2021).

  • Maldacena, J., Stanford, D. & Yang, Z. Diving into traversable wormholes. Fortschr. Phys. 65, 1700034 (2017).

    Article 
    MathSciNet 

    Google Scholar
     

  • Brown, A. R. et al. Quantum gravity in the lab: teleportation by size and traversable wormholes. Preprint at https://doi.org/10.48550/arXiv.1911.06314 (2021).

  • Nezami, S. et al. Quantum gravity in the lab: teleportation by size and traversable wormholes, part II. Preprint at https://doi.org/10.48550/arXiv.2102.01064 (2021).

  • Schuster, T. et al. Many-body quantum teleportation via operator spreading in the traversable wormhole protocol. Phys. Rev. X 12, 031013 (2022).

  • Gao, P., Jafferis, D. L. & Wall, A. C. Traversable wormholes via a double trace deformation. J. High Energy Phys. 2017, 151 (2017).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Maldacena, J. & Qi, X.-L. Eternal traversable wormhole. Preprint at https://doi.org/10.48550/arXiv.1804.00491 (2018).

  • Cotler, J. S. et al. Black holes and random matrices. J. High Energy Phys. 2017, 118 (2017).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Kitaev, A. & Suh, S. J. The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual. J. High Energy Phys. 2018, 183 (2018).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Berkooz, M., Narayan, P., Rozali, M. & Simón, J. Higher dimensional generalizations of the SYK model. J. High Energy Phys. 01, 138 (2017).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Witten, E. An SYK-like model without disorder. J. Phys. A. 52, 474002 (2019).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Gubser, S., Klebanov, I. & Polyakov, A. Gauge theory correlators from non-critical string theory. Phys. Lett. B. 428, 105–114 (1998).

    Article 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Hochberg, D. & Visser, M. The null energy condition in dynamic wormholes. Phys. Rev. Lett. 81, 746–749 (1998).

    Article 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Morris, M. S., Thorne, K. S. & Yurtsever, U. Wormholes, time machines, and the weak energy condition. Phys. Rev. Lett. 61, 1446–1449 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Visser, M., Kar, S. & Dadhich, N. Traversable wormholes with arbitrarily small energy condition violations. Phys. Rev. Lett. 90, 201102 (2003).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Visser, M. Lorentzian Wormholes: From Einstein to Hawking. Computational and Mathematical Physics (American Institute of Physics, 1995).

  • Graham, N. & Olum, K. D. Achronal averaged null energy condition. Phys. Rev. D 76, 064001 (2007).

    Article 

    Google Scholar
     

  • Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maldacena, J., Stanford, D. & Yang, Z. Conformal symmetry and its breaking in two dimensional nearly anti-de-Sitter space. Prog. Theor. Exp. Phys. 2016, 12C104 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Maldacena, J. Eternal black holes in anti-de sitter. J. High Energy Phys. 2003, 021–021 (2003).

    Article 
    MathSciNet 

    Google Scholar
     

  • Hayden, P. & Preskill, J. Black holes as mirrors: quantum information in random subsystems. J. High Energy Phys. 2007, 120 (2007).

    Article 
    MathSciNet 

    Google Scholar
     

  • Susskind, L. & Zhao, Y. Teleportation through the wormhole. Phys. Rev. D 98, 046016 (2018).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Gao, P. & Liu, H. Regenesis and quantum traversable wormholes. J. High Energy Phys. 10, 048 (2019).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Yoshida, B. & Yao, N. Y. Disentangling scrambling and decoherence via quantum teleportation. Phys. Rev. X 9, 011006 (2019).

    CAS 

    Google Scholar
     

  • Landsman, K. A. et al. Verified quantum information scrambling. Nature 567, 61–65 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berkooz, M., Isachenkov, M., Narovlansky, V. & Torrents, G. Towards a full solution of the large N double-scaled SYK model. J. High Energy Phys. 03, 079 (2019).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • García-García, A. M. & Verbaarschot, J. J. M. Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model. Phys. Rev. D 94, 126010 (2016).

    Article 

    Google Scholar
     

  • García-García, A. M. & Verbaarschot, J. J. M. Analytical spectral density of the Sachdev-Ye-Kitaev model at finite n. Phys. Rev. D 96, 066012 (2017).

  • Xu, S., Susskind, L., Su, Y. & Swingle, B. A sparse model of quantum holography. Preprint at https://doi.org/10.48550/arXiv.2008.02303 (2020).

  • Garcia-Garcia, A. M., Jia, Y., Rosa, D. & Verbaarschot, J. J. M. Sparse Sachdev-Ye-Kitaev model, quantum chaos, and gravity duals. Phys. Rev. D 103, 106002 (2021).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Caceres, E., Misobuchi, A. & Pimentel, R. Sparse SYK and traversable wormholes. J. High Energy Phys. 11, 015 (2021).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Kandala, A. et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cottrell, W., Freivogel, B., Hofman, D. M. & Lokhande, S. F. How to build the thermofield double state. J. High Energy Phys. 2019, 58 (2019).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Huggins, W. J. et al. Virtual distillation for quantum error mitigation. Phys. Rev. X 11, 041036 (2021).

    CAS 

    Google Scholar
     

  • O’Brien, T. E. et al. Error mitigation via verified phase estimation. PRX Quantum 2, 020317 (2021).

    Article 

    Google Scholar
     

  • Temme, K., Bravyi, S. & Gambetta, J. M. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Li, Y. & Benjamin, S. C. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 021050 (2017).


    Google Scholar
     

  • Kolchmeyer, D. K. Toy Models of Quantum Gravity. PhD thesis, Harvard Univ. (2022); https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37372099.

  • Zlokapa, A. Quantum Computing for Machine Learning and Physics Simulation. BSc thesis, California Institute of Technology (2021); https://doi.org/10.7907/q75q-zm20.

  • Source link