April 27, 2024
Net greenhouse gas balance of fibre wood plantation on peat in Indonesia – Nature

Net greenhouse gas balance of fibre wood plantation on peat in Indonesia – Nature

  • Lähteenoja, O. et al. The large Amazonian peatland carbon sink in the subsiding Pastaza-Marañón foreland basin, Peru. Glob. Change Biol. 18, 164–178 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Warren, M., Hergoualc’h, K., Kauffman, J. B., Murdiyarso, D. & Kolka, R. An appraisal of Indonesia’s immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion. Carbon Balance Manag. 12, 12 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gumbricht, T. et al. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Change Biol. 36, 335 (2017).


    Google Scholar
     

  • Kurnianto, S. et al. Carbon accumulation of tropical peatlands over millennia: a modeling approach. Glob. Change Biol. 21, 431–444 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Dommain, R., Couwenberg, J. & Joosten, H. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat. Sci. Rev. 30, 999–1010 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Cobb, A. R. et al. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proc. Natl Acad. Sci. USA 114, E5187–E5196 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hapsari, K. A., Jennerjahn, T., Nugroho, S. H., Yulianto, E. & Behling, H. Sea level rise and climate change acting as interactive stressors on development and dynamics of tropical peatlands in coastal Sumatra and South Borneo since the Last Glacial Maximum. Glob. Change Biol. 28, 3459–3479 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change 8, 907–913 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Loisel, J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Change 11, 70–77 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wang, S., Zhuang, Q., Lähteenoja, O., Draper, F. C. & Cadillo-Quiroz, H. Potential shift from a carbon sink to a source in Amazonian peatlands under a changing climate. Proc. Natl Acad. Sci. 115, 12407–12412 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, W. et al. Future precipitation changes and their implications for tropical peatlands. Geophys. Res. Lett. 34, L01403 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Dadap, N. C. et al. Climate change-induced peatland drying in Southeast Asia. Environ. Res. Lett. 17, 074026 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Dommain, R., Couwenberg, J., Glaser, P. H., Joosten, H. & Suryadiputra, I. N. N. Carbon storage and release in Indonesian peatlands since the last deglaciation. Quat. Sci. Rev. 97, 1–32 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Garcin, Y. et al. Hydroclimatic vulnerability of peat carbon in the central Congo Basin. Nature 612, 277–282 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Swails, E. et al. The response of soil respiration to climatic drivers in undrained forest and drained oil palm plantations in an Indonesian peatland. Biogeochemistry 142, 37–51 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Deshmukh, C. S. et al. Conservation slows down emission increase from a tropical peatland in Indonesia. Nat. Geosci. 14, 484–490 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Austin, K. G. et al. A review of land-based greenhouse gas flux estimates in Indonesia. Environ. Res. Lett. 13, 055003 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Drösler, M. et al. in 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands (eds Hiraishi, T. et al.) 2.1–2.79 (IPCC, 2013).

  • Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016).

    Article 

    Google Scholar
     

  • Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jauhiainen, J., Hooijer, A. & Page, S. E. Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia. Biogeosciences 9, 617–630 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hoyt, A. M., Chaussard, E., Seppalainen, S. S. & Harvey, C. F. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nat. Geosci. 13, 435–440 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Evans, C. D. et al. Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma 338, 410–421 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Evans, C. D. Long-term trajectory and temporal dynamics of tropical peat subsidence in relation to plantation management and climate. Geoderma 428, 116100 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Deshmukh, C. S. et al. Impact of forest plantation on methane emissions from tropical peatland. Glob. Change Biol. 26, 2477–2495 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wong, G. X. et al. How do land use practices affect methane emissions from tropical peat ecosystems? Agric. For. Meteorol. 107869, 282–283 (2020).


    Google Scholar
     

  • Swails, E., Hergoualc’h, K., Verchot, L., Novita, N. & Lawrence, D. Spatio-temporal variability of peat CH4 and N2O fluxes and their contribution to peat GHG budgets in Indonesian forests and oil palm plantations. Front. Environ. Sci. 9, 617828 (2021).

    Article 

    Google Scholar
     

  • Swails, E., Hergoualc’h, K., Deng, J., Frolking, S. & Novita, N. How can process-based modeling improve peat CO2 and N2O emission factors for oil palm plantations?. Sci. Total Environ. 839, 156153 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Prairie, Y. T. et al. Greenhouse gas emissions from freshwater reservoirs: what does the atmosphere see? Ecosystems 21, 1058–1071 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roe, S. et al. Contribution of the land sector to a 1.5 °C world. Nat. Clim. Change 9, 817–828 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Ruwaimana, M., Anshari, G. Z., Silva, L. C. R. & Gavin, D. G. The oldest extant tropical peatland in the world: a major carbon reservoir for at least 47 000 years. Environ. Res. Lett. 15, 11 (2020).

    Article 

    Google Scholar
     

  • Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510, 254–258 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yupi, H. M., Inoue, T., Bathgate, J. & Putra, R. Concentrations, loads and yields of organic carbon from two tropical peat swamp forest streams in Riau Province, Sumatra, Indonesia. Mires Peat 18, 1–15 (2016).


    Google Scholar
     

  • Cook, S. et al. Fluvial organic carbon fluxes from oil palm plantations on tropical peatland. Biogeosciences 15, 7435–7450 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Evans, C. D., Renou-Wilson, F. & Strack, M. The role of waterborne carbon in the greenhouse gas balance of drained and re-wetted peatlands. Aquat. Sci. 78, 573–590 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Neubauer, S. C. & Megonigal, J. P. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18, 1000–1013 (2015).

    Article 

    Google Scholar
     

  • Umarhadi, D. A. et al. Tropical peat subsidence rates are related to decadal LULC changes: insights from InSAR analysis. Sci. Total Environ. 816, 151561 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Swails, E. et al. Will CO2 emissions from drained tropical peatlands decline over time? Links between soil organic matter quality, nutrients, and C mineralization rates. Ecosystems 21, 868–885 (2018).

    Article 
    CAS 

    Google Scholar
     

  • McCalmont, J. et al. Short- and long-term carbon emissions from oil palm plantations converted from logged tropical peat swamp forest. Glob. Change Biol. 27, 2361–2376 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Melling, L., Goh, K. J., Chaddy, A. & Hatano, R. Soil CO2 fluxes from different ages of oil palm in tropical peatland of Sarawak, Malaysia as influenced by environmental and soil properties. Acta Hortic. 982, 25–35 (2013).

    Article 

    Google Scholar
     

  • Hoyos-Santillan, J. et al. Quality not quantity: organic matter composition controls of CO2 and CH4 fluxes in neotropical peat profiles. Soil Biol. Biochem. 103, 86–96 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiemeyer, B. et al. A new methodology for organic soils in national greenhouse gas inventories: data synthesis, derivation and application. Ecol. Indic. 109, 105838 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ma, L. et al. A globally robust relationship between water table decline, subsidence rate, and carbon release from peatlands. Commun Earth Environ 3, 254 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Zou, J. et al. Rewetting global wetlands effectively reduces major greenhouse gas emissions. Nat. Geosci. 15, 627–632 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ministry of Environment and Forestry. Indonesia. Third Biennial Update Report. Under the United Nations Framework Convention on Climate Change (2021).

  • Government of Indonesia. Indonesia. Long-Term Strategy for Low Carbon and Climate Resilience 2050 (2021).

  • Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Alsepan, G. & Minobe, S. Relations between interannual variability of regional-scale Indonesian precipitation and large-scale climate modes during 1960–2007. J. Climate 33, 5271–5291 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kljun, N., Calanca, P., Rotach, M. W. & Schmid, H. P. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev. 8, 3695–3713 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Aubinet, M. et al. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv. Ecol. Res. 30, 113–175 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Cole, L. E. S., Bhagwat, S. A. & Willis, K. J. Long-term disturbance dynamics and resilience of tropical peat swamp forests. J. Ecol. 103, 16–30 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirano, T. et al. Effects of disturbances on the carbon balance of tropical peat swamp forests. Glob. Change Biol. 18, 3410–3422 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Aalde, H. et al. in 2006 IPCC Guidelines for National Greenhouse Gas Inventories 4.1–4.83 (IPCC, 2006).

  • He, B. et al. Carbon storage and distribution in Acacia crassicarpa plantation ecosystem [in Chinese]. J. Nanjing For. Univ. Nat. Sci. 33, 46–50 (2009).

    CAS 

    Google Scholar
     

  • Zhang, H., Jiang, Y., Song, M., He, J. & Guan, D. Improving understanding of carbon stock characteristics of Eucalyptus and Acacia trees in southern China through litter layer and woody debris. Sci. Rep. 10, 4735 (2020). (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mokany, K., Raison, R. & Prokushkin, A. S. Critical analysis of root:shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Manuri, S. et al. Tree biomass equations for tropical peat swamp forest ecosystems in Indonesia. For. Ecol. Manag. 334, 241–253 (2014).

    Article 

    Google Scholar
     

  • Setiawan, B. I., Siregar, S. T., Nawari, Nugroho, A. & Sharma, M. in 15th International PEAT Congress (IPC 2016) 514–517 (International Peatland Society, 2016).

  • Vickers, D. & Mahrt, L. Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Ocean. Technol. 14, 512–526 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Wilczak, J. M., Oncley, S. P. & Stage, S. A. Sonic anemometer tilt correction algorithms. Bound.-Layer Meteorol. 99, 127–150 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Massman, W. J. A simple method for estimating frequency response corrections for eddy covariance systems. Agric. For. Meteorol. 104, 185–198 (2000).

    Article 
    ADS 

    Google Scholar
     

  • Webb, E. K., Pearman, G. I. & Leuning, R. Correction of flux measurements for density effects due to heat and water vapor transfer. Q. J. R. Meteorol. Soc. 106, 85–100 (1980).

    Article 
    ADS 

    Google Scholar
     

  • Xu, K. E. et al. The eddy-covariance storage term in air: consistent community resources improve flux measurement reliability. Agric. For. Meteorol. 279, 107734 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Foken, T. & Wichura, B. Tools for quality assessment of surface-based flux measurements. Agric. For. Meteorol. 78, 83–105 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Mauder, M. et al. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric. For. Meteorol. 169, 122–135 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Papale, D. et al. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3, 571–583 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Falge, E. et al. Gap-filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol. 107, 43–69 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Moffat, A. M. et al. Comprehensive comparison of gap‐filling techniques for eddy covariance net carbon fluxes. Agric. For. Meteorol. 147, 209–232 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Papale, D. & Valentini, R. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob. Change Biol. 9, 525–535 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Xu, T. et al. Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale. J. Geophys. Res. Atmos. 123, 8674–8690 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Kim, Y. et al. Gap‐filling approaches for eddy covariance methane fluxes: a comparison of three machine learning algorithms and a traditional method with principal component analysis. Glob. Change Biol. 26, 1499–1518 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kiew, F. et al. CO2 balance of a secondary tropical peat swamp forest in Sarawak, Malaysia. Agric. For. Meteorol. 248, 494–501 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Wutzler, T. et al. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 15, 5015–5030 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Hirano, T., Kusin, K., Limin, S. & Osaki, M. Evapotranspiration of tropical peat swamp forests. Glob. Change Biol. 21, 1914–1927 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Finkelstein, P. L. & Sims, P. F. Sampling error in eddy correlation flux measurements. J. Geophys. Res. 106, 3503–3509 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Deventer, M. J. et al. Error characterization of methane fluxes and budgets derived from a long-term comparison of open- and closed-path eddy covariance systems. Agric. For. Meteorol. 278, 107638 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Griffis, T. J. et al. Hydrometeorological sensitivities of net ecosystem carbon dioxide and methane exchange of an Amazonian palm swamp peatland. Agric. For. Meteorol. 295, 108167 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Wong, G. X. et al. How do land use practices affect methane emissions from tropical peat ecosystems? Agric. For. Meteorol. 282–283, 107869 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Azizan, S. N. F. et al. Comparing GHG emissions from drained oil palm and recovering tropical peatland forests in Malaysia. Water 13, 3372 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Melling, L., Hatano, R. & Goh, K. J. Nitrous oxide emissions from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Sci. Plant Nutr. 53, 792–805 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Jauhiainen, J. et al. Nitrous oxide fluxes from tropical peat with different disturbance history and management. Biogeosciences 9, 1337–1350 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Inubushi, K., Furukawa, Y., Hadi, A., Purnomo, E. & Tsuruta, H. Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere 52, 603–608 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hergoualc’h, K. et al. Spatial and temporal variability of soil N2O and CH4 fluxes along a degradation gradient in a palm swamp peat forest in the Peruvian Amazon. Glob. Change Biol. 26, 7198–7216 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Teh, Y. A., Murphy, W. A., Berrio, J., Boom, A. & Page, S. E. Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin. Biogeosciences 14, 3669–3683 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Adji, F. F., Hamada, Y., Darang, U., Limin, S. H. & Hatan, R. Effect of plant-mediated oxygen supply and drainage on greenhouse gas emission from a tropical peatland in Central Kalimantan, Indonesia. Soil Sci. Plant Nutr. 60, 216–230 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Source link